Advertisement

Battery Selection

  • Julia Pet-Edwards
  • Yacov Y. Haimes
  • Vira Chankong
  • Herbert S. Rosenkranz
  • Fanny K. Ennever

Abstract

In Chapter 3 we described several analyses that can be used to summarize the performances of the individual tests and the interdependencies among the tests from a data base containing test results on objects with known properties. With the availability of this summary information, whether it is obtained from the preliminary analyses or from other sources, we are now in a position to try to determine which combination of tests would be best to use for a given decision problem.

Keywords

Decision Maker Dynamic Programming Decision Rule Prior Probability Majority Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R. E., and Dreyfus, S. E., 1962, Applied Dynamic Programming, Princeton University Press, Princeton, New Jersey.Google Scholar
  2. Heinze, J. E., and Poulsen, N. K., 1983, “The optimal design of batteries of short-term tests for detecting carcinogens,” Mutation Res., 117:259–269.CrossRefGoogle Scholar
  3. McCann, J., Choi, E., Yamasaki, E., and Ames, B. N., 1975, “Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals,” Proc. Natl. Acad. Sci. (U.S.A.), 72:5135–5139.CrossRefGoogle Scholar
  4. Mitten, L. G., 1974, “Preference order dynamic programming,” Management Sci., 21:43–46.CrossRefGoogle Scholar
  5. Pet-Edwards, J., 1986, “Selection and interpretation of conditionally dependent tests for binary prediction: A Bayesian approach,” Ph.D. dissertation, Case Western Reserve University, Cleveland, Ohio.Google Scholar
  6. Pet-Edwards, J., Chankong, V., Rosenkranz, H. S., and Haimes, Y. Y., 1985, “Application of the carcinogenicity prediction and battery selection (CPBS) method to the Gene-tox data base,” Mutation Res., 153:187–200.Google Scholar
  7. Tauxe, G. W., Inman, R. R., and Mades, D. M., 1979, “Multiobjective dynamic programming: A classic problem redressed,” Water Resource Res., 15:1398–1402.CrossRefGoogle Scholar
  8. Villarreal, B., and Karwan, M. H., 1982, “Multicriteria dynamic programming with an application to the integer case,” J. Optim. Theory Appl, 38:43–69.CrossRefGoogle Scholar
  9. Yu, P.-L., 1985, Multiple-Criteria Decision Making, Plenum Press, New York.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Julia Pet-Edwards
    • 1
  • Yacov Y. Haimes
    • 1
  • Vira Chankong
    • 2
  • Herbert S. Rosenkranz
    • 2
  • Fanny K. Ennever
    • 2
  1. 1.University of VirginiaCharlottesvilleUSA
  2. 2.Case Western Reserve UniversityClevelandUSA

Personalised recommendations