Dendritic Interactions between Cell Populations in the Developing Retina

  • V. Hugh Perry
Part of the Perspectives in Vision Research book series (PIVR)


It has been known for some time that the cones of different types in the retinas of fish and birds are distributed in a very precise fashion, forming an almost crystal-like pattern. The first to draw attention to the regular distribution of cells in the inner layers of the mammalian retina was Wässle and Reimann (1978). They showed from an analysis of the distribution of the nearest-neighboring cells that the cell bodies of cat alpha ganglion cells and A- type horizontal cells were each arranged in nonrandom patterns. Subsequently, there have been a number of studies demonstrating that other cell types are arranged in nonrandom distributions (e.g., Wässle et al., 1981c; Tauchi and Masland, 1984; Vaney, 1986). The regular distribution of the cell bodies appears to go hand in hand with the relatively uniform coverage of the retina by the dendritic territories of a particular cell type (Wässle et al, 1981a,b; Tauchi and Masland, 1984). The term coverage, the number of cells overlapping any given point on the retina, is readily computed as the product of the dendritic area and local density of a given cell type (Cleland et al, 1975). The functional significance of the regular spacing of the cell bodies and the uniform coverage of the retina is clear. If the retina is to sample the visual world faithfully and convey the information to the brain, cells dealing with different aspects of the visual scene should be distributed so as to leave no holes in our perceptual world. The regular spacing of the cell bodies and relatively uniform coverage ensure this in a most economic fashion


Ganglion Cell Retinal Ganglion Cell Amacrine Cell Ganglion Cell Layer Plexiform Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armson, P. F., Bennett, M. R., and Raju, T. R., 1987, Retinal ganglion cell survival and neurite regeneration requirements: The change from Müller cell dependence to superior colliculi dependence during development. Dev. Brain Res. 32:207–216.CrossRefGoogle Scholar
  2. Beazley, L. D., Perry, V. H., Baker, B., and Darby, J. E., 1987, An investigation into the role of ganglion cells in the regulation of division and death of other retinal cells. Dev. Brain Res. 33:179–184.CrossRefGoogle Scholar
  3. Blanks, J. C., and Bok, D., 1977, An autoradiographic analysis of postnatal cell proliferation in the normal and degenerative mouse retina, J. Comp. Neurol. 174:317–328.PubMedCrossRefGoogle Scholar
  4. Carpenter, P., Sefton, A. J., Dreher, B., and Lim, W.-L., 1986, The role of the target tissue in regulating the development of retinal ganglion cells in the albino rat: Effects of kianate lesions in the superior colliculus, J. Comp. Neurol 251:240–259.PubMedCrossRefGoogle Scholar
  5. Chalupa, L. M., Williams, R. W., and Hendrickson, Z., 1984, Binocular interactions in the fetal cat regulate the size of the ganglion cell population, Neuroscience 12:1139–1146.CrossRefGoogle Scholar
  6. Clarke, P. G. H., 1985, Neuronal death during development in the isthmo-optic nucleus of the chick: Sustaining role of afferents from the tectum, J. Comp. Neurol. 234:365–379.PubMedCrossRefGoogle Scholar
  7. Cleland, B. G., Levick, W. R., and Wassle, H., 1975, Physiological identification of a morphological class of cat retinal ganglion cells, J.Physiol. (London) 248:151–171.Google Scholar
  8. Cowey, A., 1974, Atrophy of retinal ganglion cells after removal of striate cortex in a rhesus monkey, Perception 3:257–260.PubMedCrossRefGoogle Scholar
  9. Cowey, A., and Perry, V. H., 1979, The projection of the temporal retina in rats, studied by the retrograde transport of horseradish peroxidase, Exp. Brain Res. 35:457–464.PubMedGoogle Scholar
  10. Cunningham, T. J., 1982, Naturally occurring cell death and its regulation by developing neural pathways. Int. Rev. Cytol. 74:163–186.PubMedCrossRefGoogle Scholar
  11. Cunningham, T. J., Huddleston, C., and Murray, M., 1979, Modification of neuron numbers in the visual system of the rat, J. Comp. Neurol. 184:423–434.PubMedCrossRefGoogle Scholar
  12. Davies, A. M., Thoenen, H., and Barde, Y.-A., 1986, Different factors from the central nervous system and the periphery regulate the survival of sensory neurons. Nature (London) 319:497–499.CrossRefGoogle Scholar
  13. De Meyts, P., 1976, Cooperative properties of hormone receptors in cell membranes, J. Swpramos. Struct. 4:241–258.CrossRefGoogle Scholar
  14. Dineen, J., and Hendrickson, A. E., 1981, Age-correlated differences in the amount of retinal degeneration after striate cortex lesions in monkeys. Invest. Ophthal. Vis. Sci. 21:749–752.PubMedGoogle Scholar
  15. Dräger, U. C., 1985, Birth dates of retinal ganglion cells giving rise to the crossed and uncrossed optic projections in the mouse, Proc. R. Soc. London Ser. B 224:57–77.CrossRefGoogle Scholar
  16. Dunn, G. A., 1971, Mutual contact inhibition of extension of chick sensory fibres in vitro, J. Comp. Neurol. 143:491–508.PubMedCrossRefGoogle Scholar
  17. Eayrs, J. T., 1952, Relationship between the ganglion cell layer of the retina and the optic nerve in the rat, Br. J. Ophthalmol. 36:453–459.PubMedCrossRefGoogle Scholar
  18. Eysel, U., Peichl, L., and Wassle, H., 1985, Dendritic plasticity in the early postnatal feline retina: Quantitative characteristics and sensitive period, J. Comp. Neurol. 242:134–145.PubMedCrossRefGoogle Scholar
  19. Finlay, B. L., Sengelaub, D. R., and Berian, C. A., 1986, Control of cell number in the developing visual system. L Effects of monocular enucleation. Dev. Brain Res. 28:1–10.CrossRefGoogle Scholar
  20. Fisher, L. J., 1979, Development of synaptic arrays in the inner plexiform layer of the neonatal mouse retina, J. Comp. Neurol. 147:359–372.CrossRefGoogle Scholar
  21. Furber, S., Oppenheim, R. W., and Prevette, D., 1987, Naturally occurring neuron death in the ciliary ganglion of the chick embryo following removal of preganglionic input: Evidence for the role of afferents in ganglion cell survival, J. Neurosci. 7:1816–1832.PubMedGoogle Scholar
  22. Horvitz, H. R., Ellis, H. M., and Sternberg, P. W., 1982, Programmed cell death in nematode development, Neurosci. Comment 1:56–65.Google Scholar
  23. Jacobs, D. S., Perry, V. H., and Hawken, M. J., 1984, The postnatal reduction of the uncrossed projection from the nasal retina in the cat, J. Neurosci. 4:2425–2433.PubMedGoogle Scholar
  24. Jeffery, G., 1984, Retinal ganglion cell death and terminal field retraction in the developing rodent visual system, Dev. Brain Res. 13:81–96.CrossRefGoogle Scholar
  25. Jeffery, G., and Perry, V. H., 1982, Evidence for ganglion cell death during the development of the ipsilateral retinal projection in the rat, Dev. Brain Res. 2:176–180.CrossRefGoogle Scholar
  26. Johnson, J. E., Barde, Y.-A., Schwab, M., and Thoenen, H., 1986, Brain-derived neurotrophic factor supports the survival of cultured rat retinal ganglion cells, J. Neurosci. 6:3038.Google Scholar
  27. Kirby, M. A., and Chalupa, L. M., 1986, Retinal crowding alters the morphology of alpha ganglion cells, J. Comp. Neurol. 251:532–541.PubMedCrossRefGoogle Scholar
  28. Lam, K., Sefton, A. J., and Bennett, M. R., 1982, Loss of axons from the optic nerve of the rat during early postnatal development. Dev. Brain Res. 3:487–491.CrossRefGoogle Scholar
  29. Leventhal, A. G., 1982, Morphology and distribution of retinal ganglion cells projecting to different layers of the dorsal lateral geniculate nucleus in normal and Siamese cats, J.Neurosci. 2:4–1042.Google Scholar
  30. Leventhal, A. G., and Schall, J. D., 1983, Structural basis of orientation sensitivity of cat retinal ganglion cells, J. Comp. Neurol. 220:465–475.PubMedCrossRefGoogle Scholar
  31. Levick, W. R., and Thibos, L. N., 1982, Analysis of orientation bias in cat retina, J. Physiol. (London) 329:243–261.Google Scholar
  32. Linden, R., and Perry, V. H., 1982, Ganglion cell death within the developing retina: A regulatory role for ganglion cell dendrites? Neuroscience 11:2813–2827.CrossRefGoogle Scholar
  33. Linden, R., and Serfaty, C. A., 1985, Evidence for differential effects of terminal and dendritic competition upon developmental neuronal death in the retina, Neuroscience 15:853–868.PubMedCrossRefGoogle Scholar
  34. Lipton, S. A., 1986, Blockade of electrical activity promotes the death of mammalian retinal ganglion cells in culture, Proc. Natl. Acad. Sei. U.S.A. 83:9774–9778.CrossRefGoogle Scholar
  35. Maffei, L., and Perry, V. H., 1988, The axon initial segment as a possible determinant of ganglion cell morphology, Dev. Brain Res. 41:185–194.CrossRefGoogle Scholar
  36. Mariani, A. P., Kolb, H., and Nelson, R., 1984, Dopamine containing amacrine cells of the rhesus monkey retina parallels rods in spatial distribution. Brain Res. 322:1–7.PubMedCrossRefGoogle Scholar
  37. Maslim, J., Webster, M., and Stone, J., 1986, Stages in the structural differentiation of retinal ganglion cells, J. Comp. Neurol. 254:382–402.PubMedCrossRefGoogle Scholar
  38. McGuire, B. A., Stevens, J. K., and Sterling, P., 1986, Microcircuitry of beta ganglion cells in cat retina, J.Neurosci. 4:2920–2938.Google Scholar
  39. Miller, N. M., and Oberdorfer, M., 1981, Neuronal and neuroglial responses following retinal lesions in the neonatal rat, J. Comp. Neurol. 202:493–504.PubMedCrossRefGoogle Scholar
  40. Nelson, R., Famiglietti, E. V., and Kolb, H., 1978, Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina, J. Neurophysiol. 41:472–483.PubMedGoogle Scholar
  41. Okado, N., and Oppenheim, R. W., 1984, Cell death of motoneurons in the chick embryo spinal cord. IX. The loss of motoneurons following removal of afferent inputs, J.Neurosci. 4:1639–1652.PubMedGoogle Scholar
  42. Oppenheim, R. W., 1981, Neuronal death and some related regressive phenomena during neurogenesis: A selective historical review and progress report, in Studies in Developmental Neurobiology: Essays in Honour of Victor Hamburger (W. M. Cowan, ed.), pp. 74–133, Oxford University Press, New York.Google Scholar
  43. Osborne, N. N., and Perry, V. H., 1985, Effects of optic nerve transection on some classes of amacrine cells in the rat retina. Brain Res. 343:230–235.PubMedCrossRefGoogle Scholar
  44. Payne, B. R., Pearson, H. E., and Cornwell, P., 1984, Transneuronal degeneration of beta retinal ganglion cells in the cat, Proc. R. Soc. London Ser. B 222:15–32.CrossRefGoogle Scholar
  45. Perry, V. H., 1979, The ganglion cell layer of the rat retina: A Golgi study, Proc. R. Soc. London Ser. B 204:363–375.CrossRefGoogle Scholar
  46. Perry, V. H., 1981, Evidence for an amacrine cell system in the ganglion cell layer of the rat retina, Neuroscience 5:931–944.CrossRefGoogle Scholar
  47. Perry, V. H., 1984, The development of ganglion cell mosaics, in Development of Visual Pathways in Mammals (J. Stone, B. Dreher, and D. H. Rappaport, eds.), pp. 57–73, Alan Liss, New York.Google Scholar
  48. Perry, V. H., and Cowey, A., 1982, A sensitive period for ganglion cell degeneration and theformation of aberrant retinofugal connections following tectal lesions in rats, Neuroscience 7:583–594.PubMedCrossRefGoogle Scholar
  49. Perry, V. H., and Linden, R., 1982, Evidence for dendritic competition in the developing retina, Nature (London) 297:683–685.CrossRefGoogle Scholar
  50. Perry, V. H., and Maffei, L., 1988, Dendritic competition: Competition for what? Dev. Brain Res. 41:195–208.CrossRefGoogle Scholar
  51. Perry, V. H., and Walker, M., 1980, Morphology of cells in the ganglion cell layer during development of the rat retina, Proc. R. Soc. London Ser. B 208:433–455.CrossRefGoogle Scholar
  52. Perry, V. H., and Silveira, L. C. L., 1988, Functional lamination in the ganglion cell layer of the macaque’s retina, Neuroscience 25:217–223.PubMedCrossRefGoogle Scholar
  53. Perry, V. H., Linden, R., and Henderson, Z., 1983, Postnatal changes iii retinal ganglion cell and optic axon populations in the pigmented rat, J. Camp. Neurol. 219:356–368.CrossRefGoogle Scholar
  54. Perry, V. H., Oehler, R., and Cowey, A., 1984, Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey, Neuroscience 12:1101–1123.PubMedCrossRefGoogle Scholar
  55. Polyak, S. L., 1941, The Retina, University of Chicago Press, Chicago.Google Scholar
  56. Potts, R. A., Dreher, B., and Bennett, M. R., 1982, The loss of ganglion cells in the developing retina of the rat. Dev. Brain Res. 3:481–486.CrossRefGoogle Scholar
  57. Rappaport, D. H., and Stone, J., 1982, The site of commencement of maturation in mammalian retina: Observations in the cat. Dev. Brain Res. 5:273–279.CrossRefGoogle Scholar
  58. Rowe, M. H., and Dreher, B., 1982, Functional morphology of beta cells in the area centralis of cat’s retina: A model for the evolution of central specializations. Brain Behav. Evol. 21:1–23.PubMedCrossRefGoogle Scholar
  59. Saito, H. A., 1983, Morphology of physiologically identified X-, Y-, and W-type retinal ganglion cells of the cat, J. Comp. Neurol. 221:279–288.PubMedCrossRefGoogle Scholar
  60. Schall, J. D., and Leventhal, A. G., 1987, Relationships between ganglion cell dendritic structure and retinal topography in the cat, J. Comp. Neurol. 257:149–159.PubMedCrossRefGoogle Scholar
  61. Schall, J. D., Vitek, D. J., and Leventhal, A. G., 1986, Retinal constraints on orientation specificity in cat visual cortex, J.Neurosci. 6:823–836.PubMedGoogle Scholar
  62. Sengelaub, D. R., and Finlay, B. L., 1981, Early removal of one eye reduces naturally occurring cell death in the remaining eye. Science 213:573–574.PubMedCrossRefGoogle Scholar
  63. Sefton, A. J., Lund, R. D., and Perry, V. H., 1987, Target regions enhance the outgrowth and survival of ganglion cells in embryonic retina transplanted to cerebral cortex in neonatal rats, Dev.Brain Res. 33:145–149.CrossRefGoogle Scholar
  64. Sidman, R. L., 1961, Histogenesis of mouse retina studied with thymidine-3H, in The Structure of the Eye (G. K. Smelser, ed.), Academic Press, Orlando, FL.Google Scholar
  65. Sosula, L., and Glow, P. H., 1970, A quantitative ultrastructural study of the inner plexiform layer of the rat retina, J. Comp. Neurol. 140:439–478.PubMedCrossRefGoogle Scholar
  66. Sutter, A., Hosang, M., Vale, R. D., and Shooter, E. M., 1984, The interaction with nerve growth factor with its specific receptors, inCellular and Molecular Biology of Neuronal Development (L B. Black, ed.), pp. 201–214, Plenum Press, New York.CrossRefGoogle Scholar
  67. Tauchi, M., and Masland, R. H., 1984, The shape and arrangement of the cholinergic neurons in the rabbit retina, Proc. R. Soc. London Ser. B 223:101–119.CrossRefGoogle Scholar
  68. Tauchi, M., and Masland, R. H., 1985, Local order among the dendrites of an amacrine cell population, J.Neurosci. 9:2494–2501.Google Scholar
  69. Tong, L., Spear, P. D., Kalil, R. E., and Callahan, E. C., 1982, Loss of retinal X-cells in cats with neonate or adult visual cortex damage. Science 217:72–75.PubMedCrossRefGoogle Scholar
  70. Turner, D. L., and Cepko, C. L., 1987, A common progenitor for neurons and glia persists in rat retina late in development, Nature (London) 328:131–136.CrossRefGoogle Scholar
  71. Van Buren, K. M., 1963, The Retinal Ganglion Cell Layer, Charles C. Thomas, Springfield, IL.Google Scholar
  72. Vaney, D. I., 1984, “Coronate” cells in the rabbit retina have the “starburst” dendritic morphology, Proc. R. Soc. London Ser. B 220:501–508.CrossRefGoogle Scholar
  73. Vaney, D. I., 1985, The morphology and topographic distribution of All amacrine cells in the cat retina, Proc. R. Soc. London Ser. B 224:475–488.CrossRefGoogle Scholar
  74. Vaney, D. I., 1986, Morphological identification of serotonin accumulating neurons in the living retina. Science 223:444–446.CrossRefGoogle Scholar
  75. Voigt, T., 1986, Cholinergic amacrine cells in the rat retina, J. Comp. Neurol. 248:19–35.CrossRefGoogle Scholar
  76. Wässle, H., and Riemann, H. J., 1978, The mosaic of nerve cells in the mammalian retina, Proc. R. Soc. London Ser. B 200:441–461.CrossRefGoogle Scholar
  77. Wässle, H., Peichl, L., and Boycott, B. B., 1981a, Dendritic territories of cat retinal ganglion cells. Nature (London 292:344–345.CrossRefGoogle Scholar
  78. Wässle, H., Peichl, L., and Boycott, B. B., 1981b, Morphology and topography of on- and off- alpha cells in the cat retina, Proc. R. Soc. London Ser. B 212:157–175.CrossRefGoogle Scholar
  79. Wässle, H., Boycott, B. B., and Illing, R.-B., 1981c, Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations, Proc. R. Soc. London Ser. B 212:177- 195.CrossRefGoogle Scholar
  80. Weidman, T. A., and Kuwabara, T., 1968, Postnatal development of the rat retina. Arch. Ophthalmol. 79:470–484.PubMedCrossRefGoogle Scholar
  81. Williams, R. W., Bastiani, M. J., Lia, B., and Chalupa, L. M., 1986, Growth cones, dying axons, and developmental fluctuations in the fiber population in the cat optic nerve, J. Comp. Neurol. 246:32–69.PubMedCrossRefGoogle Scholar
  82. Young, R. W., 1985, Cell differentiation in the retina of the mouse, Anat. Ree. 212:199–205.CrossRefGoogle Scholar
  83. Young, R. W., 1986, Cell death during differentiation of the retina, J. Comp. Neurol. 229:362–373.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • V. Hugh Perry
    • 1
  1. 1.Department of Experimental PsychologyUniversity of OxfordOxfordEngland

Personalised recommendations