Topographic Organization of the Visual Pathways

  • Alan D. Springer
Part of the Perspectives in Vision Research book series (PIVR)


The position of ganglion cells within a flat-mounted retina can be described with polar coordinates (r, θ). r represents distance from the optic disc (origin), and θ represents the angle formed by a line connecting a retinal ganglion cell and the origin with respect to a fixed reference line (i.e., polar axis). Thus, θ denotes the position of a retinal ganglion ceil along a circumferential line and r denotes the position of a retinal ganglion cell along a radial line. For vertebrates such as goldfish, r not only represents distance from the optic disc, but it also indicates the relative birthday of a retinal ganglion cell. The first retinal ganglion cells to have become postmitotic are closest to the optic disc and the most recently generated retinal ganglion cells are near the retinal margin. Such animals are never totally postembryonic, and their retinas continue to grow, much like a tree, by the addition of annuli of cells to the retinal margin (Johns, 1977; Meyer, 1978).


Optic Nerve Ganglion Cell Retinal Ganglion Cell Optic Nerve Head Optic Tract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebersold, H., Creutzfeld, O. D., Kuhnt, U., and Sanides, D., 1981, Representation of the visual field in the optic tract and optic chiasma of the cat, Exp. Brain Res. 42:127–145.PubMedCrossRefGoogle Scholar
  2. Anders, J., and Hibbard, E., 1974, The optic system of the teleost Cichlasoma biocellatum, J. Comp. Neurol. 158:145–154.PubMedCrossRefGoogle Scholar
  3. Attardi, D. G., and Sperry, R. W., 1963, Preferential selection of central pathways by regenerating optic fibers, Exp. Neurol. 7:46–64.PubMedCrossRefGoogle Scholar
  4. Blaxter, J. H. S., and Jones, M. P., 1967, The development of the retina and retinomotor responses in the herring, J.Mar Biol. Assoc. U.K. 47:677–697.CrossRefGoogle Scholar
  5. Bodick, N., and Levinthal, C., 1980, Growing optic nerve fibers follow neighbors during embryogenesis, Proc. Natl. Acad. Sci. U.S.A. 77:4374–4378.PubMedCrossRefGoogle Scholar
  6. Bunt, S. M., 1982, Retinotopic and temporal organization of the optic nerve and tracts in the adult goldfish, J. Comp. Neurol. 206:209–226.PubMedCrossRefGoogle Scholar
  7. Bunt, S. M., and Horder, T. J., 1983, Evidence for an orderly arrangement of optic axons within the optic nerves of the major nonmammalian vertebrate classes, J. Comp. Neurol. 213:94–114.PubMedCrossRefGoogle Scholar
  8. Chamberlain, S. C., and Barlow, R. B. Jr., 1982, Retinotopic organization of lateral eye input to Limulus brain, J.Neurophysiol. 48:505–520.PubMedGoogle Scholar
  9. Cook, J. E., 1982, Errant axons in the normal goldfish retina reach retinotopic tectal sites, Brain Res. 250:154–158.PubMedCrossRefGoogle Scholar
  10. Donovan, A., 1966, The postnatal development of the cat’s retina, Exp. Eye Res. 5:439–453.CrossRefGoogle Scholar
  11. Drager, U. C., 1985, Birth dates of retinal ganglion cells giving rise to the crossed and uncrossed optic projections in the mouse, Proc. R. Soc. London Ser. B 224:57–77.CrossRefGoogle Scholar
  12. Easter, S. S. Jr., Rusoff, A. C., and Kish, P. E., 1981, The growth and organization of the optic nerve and tract in juvenile and adult goldfish, J. Neurosci. 1:793–811.PubMedGoogle Scholar
  13. Easter, S. S. Jr., Bratton, B., and Scherer, S. S., 1984, Growth-related order of the retinal fiber layer in goldfish, J.Neurosci. 4:2173–2190.PubMedGoogle Scholar
  14. Ehrlich, D., and Mark, R., 1984, The course of axons of retinal ganglion cells within the optic nerve and tract of the chick (Gallus gallus), J. Comp. Neurol. 223:583–591.PubMedCrossRefGoogle Scholar
  15. Fawcett, J. W., 1981, How axons grow down the Xenopus optic nerve, J.Embryol. Exp. Morphol. 65:219–233.PubMedGoogle Scholar
  16. Fawcett, J. W., Taylor, J. S. H., Gaze, R. M., Grant, P., and Hirst, E., 1984, Fibre order in the normal Xenopus optic tract, near the chiasma, J.Embryol. Exp. Morphol. 83:1–14.PubMedGoogle Scholar
  17. Fernald, R. D., 1980, Optic nerve distention in a cichlid fish, Vision Res. 20:1015–1019.PubMedCrossRefGoogle Scholar
  18. Eraser, S. E., 1980, A differential adhesion approach to the patterning of nerve connections. Dev. Biol. 79:453–464.CrossRefGoogle Scholar
  19. Gaze, R. M., and Keating, M. J., 1972, The visual system and “neuronal specificity,” Nature (London) 237:375–378.CrossRefGoogle Scholar
  20. Grun, G., 1975, Structural basis of the functional development of the retina in the cichlid Tilapia leucosticta (Teleostei), J. Embryol. Exp. Morphol. 33:243–257.PubMedGoogle Scholar
  21. Hinds, J. E., and Hinds, P. L., 1974, Early ganglionic cell differentiation in the mouse retina: An electron microscopic analysis utilizing serial sections. Dev. Biol. 37:381–416.PubMedCrossRefGoogle Scholar
  22. Horder, T. J., and Martin, K. A. C., 1978, Morphogenetics as an alternative to chemospecificity in the formation of nerve connections. InCell-Cell Recognition (A. S. G. Curtis, ed), pp. 275–358, Cambridge University Press, Cambridge.Google Scholar
  23. Horton, J. C., Greenwood, M. M., and Hubel, D. H., 1979, Non-retinotopic arrangement of fibres in cat optic nerve. Nature (London) 282:720–722.CrossRefGoogle Scholar
  24. Johns, P. R., 1977, Growth of the adult goldfish eye. III. Source of the new retinal cells, J. Comp. Neurol. 176:343–358.PubMedCrossRefGoogle Scholar
  25. Kliot, M., and Shatz, C. J., 1982, Genesis of different retinal ganglion cell types in the cat, Neurosci. Abstr. 8:815.Google Scholar
  26. Krayanek, S., and Goldberg, S., 1981, Oriented extracellular channels and axonal guidance in the embryonic chick retina. Dev. Biol. 84:41–50.PubMedCrossRefGoogle Scholar
  27. Lyall, A. H., 1957, The growth of the trout retina, Q. J. Microsc. Sci. 98:101–110.Google Scholar
  28. Meinertzhagen, I. A., 1976, The organization of perpendicular fibre pathways in the insect optic lobe, Philos. Trans. R. Soc. London Ser. B 274:555–596.CrossRefGoogle Scholar
  29. Meyer, R. L., 1978, Evidence from thymidine labeling for continuing growth of retina and tectum in juvenile goldfish, Exp. Neurol. 59:99–111.PubMedCrossRefGoogle Scholar
  30. Morel, K. D., Mednick, A. S., and Springer, A. D., 1986, A retinal ganglion cell found only in the ventral retina has a unique intraretinal axonal trajectory, Neurosci. Abstr. 12:636.Google Scholar
  31. Naito, J., 1986, Course of retinogeniculate projection fibers in the cat optic nerve, J. Comp. Neurol. 251:376–387.PubMedCrossRefGoogle Scholar
  32. Ogden, T. E., 1983a, Nerve fiber layer of the macaque retina: Retinotopic organization, Invest. Opthalmol. Vis. Sci. 24:85–98.Google Scholar
  33. Ogden, T. E., 1983b, Nerve fiber layer of the owl monkey retina: Retinotopic organization. Invest. Ophthalmol. Vis. Sci. 24:265–269.PubMedGoogle Scholar
  34. Presson, J., Fernald, R. D., and Max, M., 1985, The organization of retinal projections to the diencephalon and pretectum in the cichlid fish, Haplochromis burtoni, J. Comp. Neurol. 235:360–374.PubMedCrossRefGoogle Scholar
  35. Rager, G., 1980, Development of the retinotectal projection in the chicken. Adv. Anat. Embryol. Cell Biol. 63:1–92.Google Scholar
  36. Rapaport, D. H., and Stone, J., 1983, The topography of cytogenesis in the developing retina of the cat, J.Neurosci. 3:1824–1834.PubMedGoogle Scholar
  37. Reh, T. A., Pitts, E., and Constantine-Paton, M., 1983, The organization of the fibers in the optic nerve of the normal and tectumlessRana pipiens, J. Comp. Neurol. 218:282–296.PubMedCrossRefGoogle Scholar
  38. Robinson, S. R., 1987, Ontogeny of the area centralis in the cat, J. Comp. Neurol. 255:50–67.PubMedCrossRefGoogle Scholar
  39. Roth, R. L., 1974, Retinotopic organization of goldfish optic nerve and tract, Anat. Ree. 178:453.Google Scholar
  40. Rusoff, A. C., 1984, Paths of axons in the visual system of perciform fish and implications of these paths for rules governing axonal growth, J. Neurosci. 4:1414–1428.PubMedGoogle Scholar
  41. Scalia, F., and Arango, V., 1983, The anti-retinotopic organization of the frog’s optic nerve, Brain Res. 266:121–126.PubMedCrossRefGoogle Scholar
  42. Scholes, J. H., 1979, Nerve fibre topography in the retinal projection to the tectum. Nature (London) 278:620–624.CrossRefGoogle Scholar
  43. Scholes, J. H., 1981, Ribbon optic nerves and axonal growth patterns in the retinal projection to the tectum, Br. Soc. Dev. Biol. Symp. 5:181–214.Google Scholar
  44. Sengelaub, D. R., Dolan, R. P., and Finlay, B. L., 1986, Cell generation, death, and retinal growth in the development of the hamster retinal ganglion cell layer, J. Comp. Neurol. 246:527–543.PubMedCrossRefGoogle Scholar
  45. Sharma, S. C., and Ungar, F., 1980, Histogenesis of the goldfish retina, J. Comp. Neurol. 191:373–382.PubMedCrossRefGoogle Scholar
  46. Silver, J., 1984, Studies on the factors that govern directionality of axonal growth in the embryonic optic nerve and at the chiasm in mice, J. Comp. Neurol. 223:238–251.PubMedCrossRefGoogle Scholar
  47. Springer, A. D., and Gaffney, J. S., 1981, Retinal projections in the goldfish: A cobaltouslysine study, J. Comp. Neurol. 203:401–424.PubMedCrossRefGoogle Scholar
  48. Springer, A. D., and Mednick, A. S., 1984, Selective innervation of the goldfish suprachiasmatic nucleus by ventral retinal ganglion cell axons, Brain Res. 323:293–296.PubMedCrossRefGoogle Scholar
  49. Springer, A. D., and Mednick, A. S., 1985a, Retinofugal and retinopetal projections in the cichlid fish Astronotus ocellatus, J. Comp. Neurol. 236:179–196.PubMedCrossRefGoogle Scholar
  50. Springer, A. D., and Mednick, A. S., 1985b, Topography of the retinal projection to the superficial pretectal parvicellular nucleus of goldfish: A cobaltous-lysine study, J. Comp. Neurol. 237:239–250.PubMedCrossRefGoogle Scholar
  51. Springer, A. D., and Mednick, A. S., 1985c, Topography of the goldfish optic tracts: Implications for the chronological clustering model, J. Comp. Neurol. 239:108–116.PubMedCrossRefGoogle Scholar
  52. Springer, A. D., and Mednick, A. S., 1985d, A quantitative study of the relative contribution of different retinal sectors to the innervation of various thalamic and pretectal nuclei in goldfish, J.Camp. Neurol. 242:369–380.CrossRefGoogle Scholar
  53. Springer, A. D., and Mednick, A. S., 1986a, Relationship of ocular pigmentation to the boundaries of dorsal and ventral retina in a nonmammalian vertebrate, J. Comp. Neurol. 245:74–82.PubMedCrossRefGoogle Scholar
  54. Springer, A. D., and Mednick, A. S., 1986b, Retinotopic and chronotopic organization of the goldfish retinal ganglion cell axons throughout the optic nerve, J. Comp. Neurol. 247:221- 232.PubMedCrossRefGoogle Scholar
  55. Springer, A. D., and Mednick, A. S., 1986c, Simple and complex retinal ganglion cell axonal rearrangements at the optic chiasm, J. Comp. Neurol. 247:233–245.PubMedCrossRefGoogle Scholar
  56. Taylor, J. S. H., 1987, Fibre organization and reorganization in the retinotectal projection of Xenopus, Development 99:393–410.PubMedGoogle Scholar
  57. Torrealba, F., Guillery, R. W., Polley, E. H., and Mason, C. A., 1981, A demonstration of several independent, partially overlapping retinotopic maps in the optic tract of the cat. Brain Res. 219:428–432.PubMedCrossRefGoogle Scholar
  58. Torrealba, F., Guillery, R. W., Eysel, U., Polley, E. H., and Mason, C. A., 1982, Studies of retinal representations within the cat’s optic tract, J. Comp. Neurol. 211:377–396.PubMedCrossRefGoogle Scholar
  59. Wagner, H.-J., 1974, Development of the retina of Nannacara anomala (Regan) (Cichlidae, Teleostei) with special reference to regional variations of differentiation, Z.Morphol. Tiere 79:113- 131.CrossRefGoogle Scholar
  60. Walls, G. L., 1942, The Vertebrate Eye and Its Adaptive Radiation, Bloomfield, New Jersey: Cranbrook Institute of Science.CrossRefGoogle Scholar
  61. Walsh, C., and Guillery, R. W., 1984, Fibre order in the pathways from the eye to the brain. Trends Neurosci. 7:208–211.CrossRefGoogle Scholar
  62. Williams, R. W., and Rakic, P., 1985, Dispersion of growing axons within the optic nerve of the embryonic monkey, Proc. Natl Acad. Sci. U.S.A. 82:3906–3910.PubMedCrossRefGoogle Scholar
  63. Yamadori, T., 1981, An experimental anatomical study on the topographic termination of the optic nerve fibers in the rat, J. Hirnforseh. 22:313–326Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Alan D. Springer
    • 1
  1. 1.Department of AnatomyNew York Medical CollegeValhallaUSA

Personalised recommendations