Development of Accommodation and Refractive State in the Eyes of Humans and Chickens

  • Howard C. Howland
  • Frank Schaeffel
Part of the Perspectives in Vision Research book series (PIVR)


The optical quality of the eyes of some higher vertebrates (mainly primates and birds) is so good that aberrations induced by the image-forming structures are not the limiting factor of optical resolution. Instead, diffraction of light at the pupil aperture prohibits a further improvement of the optical resolution at the particular eye size. To attain such optical quality, considerable precision in the arrangement of the ocular structures is required. It can be calculated that for an emmetropic human eye with a depth of focus of about 0.5 D (Campbell, 1957), the retina may not move out of its proper position by more than about 100 µm without detectable loss of resolution. (Emmetropia is the technical name for that condition where a distant image is in good focus on the retina with resting accommodation.)


Pupil Diameter Refractive State Corneal Curvature Pathological Myopia Positive Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramov, I., Gordon, J., Hendrickson, A., Dobson, V., and LaBossiere, E., 1982, The retina of the newborn human infant, Science 217:265–267.PubMedCrossRefGoogle Scholar
  2. Blum, H. L., Peters, H. B., and Bettman, J. W., 1959, Vision Screening for Elementary Schools: The Orinda Study, University of California Press, Berkeley.Google Scholar
  3. Bobier, W. R., and Braddick, O. J., 1985, Eccentric photorefraction: Optical analysis and empirical measures. Am. J. Optom. Physiol Opt. 62:614–620.PubMedGoogle Scholar
  4. Boothe, R., Dobson, V., and Teller, D., 1985, Postnatal development of vision in human and nonhuman primates, Annu. Rev. Neurosci. 8:495–545.PubMedCrossRefGoogle Scholar
  5. Braddick, O., Atkinson, J., French, J., and Rowland, H. C., 1979, A photorefractive study of infant accommodation. Vision Res. 19:1319–1330.PubMedCrossRefGoogle Scholar
  6. Campbell, F. W., 1957, The depth of field of the human eye. Opt. Acta 4:157–164.CrossRefGoogle Scholar
  7. Campbell, F. W., and Gubisch, R. W., 1966, Optical quality of the human eye, J. Physiol. (London) 186:558–578.Google Scholar
  8. Curtin, B. J., 1985, The Myopias: Basic Science and Clinical Management, Harper & Row, New York.Google Scholar
  9. Dobson, v., and Teller, D. Y., 1978, Visual acuity in human infants: A review and comparison of behavioral and electrophysiological studies. Vision Res. 18:1469–1483.PubMedCrossRefGoogle Scholar
  10. Glickstein, M., and Millodot, M., 1970, Retinoscopy and eye size. Science 168:605–606.PubMedCrossRefGoogle Scholar
  11. Helmholtz, H. von, 1962, Helmholtz’s Treatise on Physiological Optics (translation of the 3rd ed. of Handbuch der Physiologischen Optik, 1909), Dover, New York.Google Scholar
  12. Hodos, W., and Kuenzel, W. J., 1984, Retinal-image degradation produces ocular enlargement in chicks, Invest. Ophthalmol. Vis. Sei. 25(6):652–659.Google Scholar
  13. Hodos, W., Fitzke, F. W., Hayes, B. P., and Holden, A. L., 1985, Experimental myopia in chicks: Ocular refraction by electroretinography, Invest. Ophthalmol. Vis. Sci. 26:1423–1430.PubMedGoogle Scholar
  14. Howland, H. C., 1980, The optics of static photographic skiascopy, Comments on a paper by K. Kaakinen: A simple method for screening of children with strabismus, anisometropia or ametropia by simultaneous photography of the corneal and fundus reflexes. Acta Ophthalmol. 58:221–228.Google Scholar
  15. Howland, H. C., 1982a, Infant eyes: Optics and accommodation. Current Eye Res. 2:217–224.CrossRefGoogle Scholar
  16. Howland, H. C., 1982b, Optical techniques for detecting and improving deficient vision, in Optics in Biomedical Sciences (G. von Bally and P. Greguss, eds.), pp. 188–196, Springer-Verlag, Berlin.Google Scholar
  17. Howland, R. C., 1984, The optics of retinoscopy and photoretinoscopy: Results from ray tracing, J. Opt. Soc. Am. 1(12): 1268.Google Scholar
  18. Howland, R. C., 1985, Optics of photoretinoscopy: Results from ray tracing, Am. J.Optom. Physiol. Opt. 62:621–625.PubMedGoogle Scholar
  19. Howland, R. C., and Rowland, B., 1974, Photorefraction, a technique for the study of refractive state at a distance, J.Opt. Soc. Am. 64(2):240–249.PubMedCrossRefGoogle Scholar
  20. Howland, R. C., and Rohler, R., 1977, Photographic measurement of linespread of human eye, J. Opt. Soc. Am. 67:1407.CrossRefGoogle Scholar
  21. Rowland, R. C., and Sayles, N., 1984, Photorefractive measurements of astigmatism in infants and young children. Invest. Ophthalmol. Vis. Sci. 25:93–102.Google Scholar
  22. Rowland, R. C., and Sayles, N., 1985, Photokeratometric and photorefractive measurements of infant astigmatism. Vision Res. 25(1):73–81.CrossRefGoogle Scholar
  23. Rowland, R. C., and Sayles, N., 1987, A photorefractive characterization of focussing ability of infants and young children, Invest. Ophthalmol Vis. Sci. 28:1005–1015.Google Scholar
  24. Rowland, R. C., Atkinson, J., Braddick, O., and French, J., 1978, Infant astigmatism measured by photorefraction. Science 202:331–333.CrossRefGoogle Scholar
  25. Rowland, R. C., Braddick, O., Atkinson, J., and Rowland, B., 1983, Optics of photorefraction: Orthogonal and isotropic methods, J. Opt. Soc. Am. 73(12): 1701–1708.CrossRefGoogle Scholar
  26. Ingram, R. M., and Walker, C., 1979, Refraction as a means of predicting squint or amblyopia in preschool siblings of children known to have these defects, Br. J. Ophthalmol. 63(4):238–242.PubMedCrossRefGoogle Scholar
  27. Ingram, R. M., Walker, C., Wilson, J. M., Arnold, P. E., and Dally, S., 1986, Prediction of amblyopia and squint by means of refraction at age 1 year, Br. J. Ophthalmol. 70:12–15.PubMedCrossRefGoogle Scholar
  28. Kaakinen, K., 1979, A simple method for screening of children with strabismus, anisometropia or ametropia by simultaneous photography of the corneal and the fundus reflexes. Acta Ophthalmol. 57:161–171.Google Scholar
  29. Kaakinen, K., 1981a, Photographic screening for strabismus and high refractive errors of children aged 1–4 years. Acta Ophthalmol. 59:38–44.Google Scholar
  30. Kaakinen, K., 1981b, Simultaneous two-flash static photoskiascopy. Acta Ophthalmol. 59:378–386.Google Scholar
  31. Kaakinen, K., and Ranta-Kemppainen, L., 1986, Screening of infants for strabismus and refractive errors with two-flash photorefraction with and without cyclopegia, Acta Ophthalmol. 64:578–582.Google Scholar
  32. Murphy, C. J., Rowland, R. C., Kwiecinski, G. G., Kern, T., and Kallen, F., 1983, Visual accommodation in the flying fox (Pteropus giganteiis), Vision Res. 23:617–620.PubMedCrossRefGoogle Scholar
  33. Morris, V. B., 1982, An afoveate area centralis in the chick retina, J. Comp. Neurol. 210:198–203.PubMedCrossRefGoogle Scholar
  34. Nalwalk, J., and Rowland, R. C., 1986, Aberroscopic measurements and linespread correlates of monochromatic aberrations of the eye,Invest. Ophthalmol. Vis. Sci. (Suppl.) 26(3):77 (March).Google Scholar
  35. Norcia, A., Zadnick, K., and Day, S., 1986, Photorefraction with a catadioptic lens: Improvement on the method of Kaakinen, Acta Ophthalmol. 64:379–385.Google Scholar
  36. Pettigrew, J. D., and Konishi, M., 1976, Effect of monocular deprivation on binocular neurones in the owl’s visual wulst. Nature (London) 264:753–754.CrossRefGoogle Scholar
  37. Schaeffel, F., and Rowland, R. C., 1987, Corneal accommodation in chick and pigeon, J. Comp. Physiol. A160:375–384.CrossRefGoogle Scholar
  38. Schaeffel, F., and Rowland R. C., 1988, Visual optics in normal and ametropic chickens, Clin. Vis. Sci. 3 (2): 83–98.Google Scholar
  39. Schaeffel, F., Rowland, R. C., and Farkas, L., 1986, Natural accommodation in the growing chicken, Vision Res. 26:1977–1993.PubMedCrossRefGoogle Scholar
  40. Schaeffel, F., Farkas, L., and Rowland, R. C., 1987, Infrared photoretinoscope, Appl. Opt. 26:1505–1509.PubMedCrossRefGoogle Scholar
  41. Schaeffel, F., Glasser, A., and Rowland, R. C., 1988, Accommodation, refractive error and eye growth in chickens. Vision Res. 28:639–657.PubMedCrossRefGoogle Scholar
  42. Troilo, D., and Wallman, J., 1987, Changes in corneal curvature during accommodation in chicks. Vision Res. 27:241–247.PubMedCrossRefGoogle Scholar
  43. Wallman, J., and Adams, J. I., 1987, Developmental aspects of experimental myopia in chicks: Susceptibility, recovery and relation to emmetropization. Vision Res. 27:1139–1163.PubMedCrossRefGoogle Scholar
  44. Wallman, J., Türkei, J., and Tractman, J., 1978, Extreme myopia produced by modest change in early visual experience. Science 201:1249–1252.PubMedCrossRefGoogle Scholar
  45. Wallman, J., Rosenthal, D., Adams, J. J., Trachtman, J. N., and Romagnano, L., 1981a, Role of accommodation and developmental aspects of experimental myopia in chicks, Doc. Ophthalmol. Proc. Ser. 28:197–206.CrossRefGoogle Scholar
  46. Wallman, J., Adams, J. I., and Trachtman, J. N., 1981b, The eyes of young chickens grow towards emmetropia, Invest. Ophthalmol. Vis. Sci. 20:557–690.PubMedGoogle Scholar
  47. Wallman, J., Gottlieb, M. D., Rajaram, V., and Wentzek, L. A., 1987, Local retinal regions control local eye growth and myopia. Science 237:73–77.PubMedCrossRefGoogle Scholar
  48. Walls, G. L., 1967, The Vertebrate Eye and Its Adaptive Radiation, Hafner, New YorkGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Howard C. Howland
    • 1
  • Frank Schaeffel
    • 1
  1. 1.Section of Neurobiology and BehaviorCornell UniversityIthacaUSA

Personalised recommendations