Fish Vision

  • Russell D. Fernald
Part of the Perspectives in Vision Research book series (PIVR)


All vertebrate eyes have evolved from those of common underwater living ancestors and consequently are strikingly similar structures which form an image with a single lens. In contrast, invertebrates have a rich variety of eye types which form images in one of three ways: with single lenses, multiple lenses, or mirrors (Land, 1984). Since eyes must obey fundamental optical laws, physical constraints on eye design and structure provide the most straightforward means of understanding the adaptive value of ocular specializations. Using these physical constraints, inferences about the selective forces that have undoubtedly “shaped” eyes can be made with some confidence, particularly in the study of aquatic eyes. In contrast, in the analysis of ocular development there is no corresponding a priori knowledge of fundamental constraints to aid in interpreting these developmental processes. Developmental similarities themselves must serve to guide our understanding of these processes. Phylogenetic comparisons offer significant advantages because the modifications that have occurred during evolutionary time are carried in organisms and are most evident during development.


Spherical Aberration Cichlid Fish Cone Photoreceptor Spherical Lens Refractive Index Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, E. E., and Fernald, R. D., 1985, Scotopic visual threshold in the African cichlid fish Haplochromis burtoni, J. Comp. Physiol. 157:247–253.CrossRefGoogle Scholar
  2. Baerends, G. P., and Baerends-Van Roon, J. M., 1950, An introduction to the ethology of cichlid fishes. Behaviour (Suppl.) 1:1–243.Google Scholar
  3. Baerends, G. P., Bennema, B. E., and Vogelzang, A. A., 1960, Ueber die anderung der sehscharfe mit dem Wachstum bei Aequidens portalegrensis (Hensel) (Pisces, cichlidae), Zool. Jahrb. Allg. Syst. Oko. 88:67–78.Google Scholar
  4. Beer, T., 1894, Die accommodation des fischauges. Pflugers Arch. Gesamte Physiol. Menschen Tiere 58:523–650.CrossRefGoogle Scholar
  5. Brewster, D., 1816, On the structure of the crystalline lens in fishes and quadrupeds, as ascertained by its action on polarized light, Philos. Trans. R. Soc. London 311–317.Google Scholar
  6. Darwin, C., 1987, Origin of Species, abridged and introduced by Richard Leakey, Rainbird Publishing Group, London.Google Scholar
  7. Davis, M. R., and Fernald, R. D., 1986, Social environment modulates the development of a forebrain peptidergic nucleus in the cichlid fish, Haplochromis burtoni, Soc. Neurosci. Abstr. 11:1283.Google Scholar
  8. Easter, S. S., Johns, P. R., and Baumann, L. R., 1977, Growth of the adult goldfish eye. I. Optics, Vision Res. 16:469–476.CrossRefGoogle Scholar
  9. Eigenmann, C. H., and Shafer, G. D., 1900, The mosaic of single and twin cones in the retina of fishes, Am. Natural 34:109–118.CrossRefGoogle Scholar
  10. Fernald, R. D., 1975, Fast body turns in a cichlid fish. Nature (London) 258:228–229.CrossRefGoogle Scholar
  11. Fernald, R. D., 1977, Quantitative behavioral observations of Haplochromis burtoni under semi- natural conditions, Anim. Behav. 25:643–653.CrossRefGoogle Scholar
  12. Fernald, R. D., 1980a, Optic nerve distention in a cichlid fish. Vision Res. 20:1015–1019.PubMedCrossRefGoogle Scholar
  13. Fernald, R. D., 1980b, Responses of male Haplochromis burtoni reared in isolation to models of conspecifics, Z. Tierpsychol 54:85–93.CrossRefGoogle Scholar
  14. Fernald, R. D., 1981a, Visual field and retinal projections in the African cichlid fish, Neurosci. Abstr. 7:844.Google Scholar
  15. Fernald, R. D., 1981b, Chromatic organization of the cichlid fish retina. Vision Res. 20:1749–1753.CrossRefGoogle Scholar
  16. Fernald, R. D., 1982, Retinal projections in the African cichlid fish, Haplochromis burtoni, J. Comp. Neurol. 206:379–389.PubMedCrossRefGoogle Scholar
  17. Fernald, R. D., 1983, Neural basis of visual pattern recognition in fish, in Advances in Vertebrate Neuroethology (J. P. Ewert, R. R. Caparnica, and D.J. Ingle, eds.), pp. 569–580, Plenum Press, New York.Google Scholar
  18. Fernald, R. D., 1984, Vision and behavior in an African cichlid fish. Am. Sci. 72:58–65.Google Scholar
  19. Fernald, R. D., 1985a, Growth of the teleost eye: Novel solutions to complex constraints, Environ. Biol. Fish. 13:113–123.CrossRefGoogle Scholar
  20. Fernald, R. D., 1985b, Eye movements in the African cichlid fish, Haplochromis burtoni, J. Comp. Physiol. 156:199–208.CrossRefGoogle Scholar
  21. Fernald, R. D., 1987, Aquatic adaptations in fish eyes, in Sensory Biology of Aquatic Animals (J. Atema, R. R. Fay, A. N. Popper, and W. N. Tavolga, eds.). Chap. 19, Springer-Verlag, New York.Google Scholar
  22. Fernald, R. D., and Hirata, N., 1975, Non-intentional sound production in a cichlid fish (Haplochromis burtoni, Gunther), Experientia 31:299–300.PubMedCrossRefGoogle Scholar
  23. Fernald, R. D., and Hirata, N., 1977a, Field study of Haplochromis burtoni Quantitative behavioral observations, Anim. Behav. 25:964–975.CrossRefGoogle Scholar
  24. Fernald, R. D., and Hirata, N., 1977b, Field study of Haplochromis burtoni Habitats and co- habitats, Environ. Biol. 2:299–308.CrossRefGoogle Scholar
  25. Fernald, R. D., and Hirata, N., 1979, The ontogeny of social behavior and body coloration in the African cichlid fish,Haplochromis burtoni, Z. Tierpsychol. 50:180–187.Google Scholar
  26. Fernald, R. D., and Liebman, P. A., 1980, Visual receptor pigments in the African cichlid fish, Haplochromis burtoni, Vision Res. 20:857–864.CrossRefGoogle Scholar
  27. Fernald, R. D., and Wright, S. E., 1983, Maintenance of optical quality during crystalline lens growth. Nature (London) 301:618–620.CrossRefGoogle Scholar
  28. Fernald, R. D., and Wright, S. E., 1985a, Growth of the visual system of the African cichlid fish, H. burtoni Optics, Vision Res. 25:155–161.PubMedCrossRefGoogle Scholar
  29. Fernald, R. D., and Wright, S. E., 1985b, Growth of the visual system of the African cichlid fish, H. burtoni Accommodation, Vision Res. 25:163–170.PubMedCrossRefGoogle Scholar
  30. Fernald, R. D., McDonald, R., and Korenbrot, J., 1987, Light-dark cycle of opsin mRNA production in toad and fish, Invest. Ophthalmol. Visual Sci. (Suppl.) 28(3): 184.Google Scholar
  31. Fernald, R. D., Wright, S. E., and Shelton, L., 1988, Growth of the visual system of the African cichlid fish, H. burtoni Optic field and retinal field, in press.Google Scholar
  32. Fraley, N. B., and Fernald, R. D., 1982, Social control of development rate in the African cichlid fish, Haplochromis burtoni, Z. Tierpsychol. 60:66–82.Google Scholar
  33. Fryer, G., and lies, T. D., 1972, in Cichlid Fishes of the Great Lakes of Africa, Oliver and Boyd, Edinburgh.Google Scholar
  34. Geiger, W., 1956, Quantitative Untersuchungen über das gehirn der knochenfische, mit besondere Berücksichtigung seines relativen Wachstums, Acta Anat. 26:121–163; 27:324–350.PubMedCrossRefGoogle Scholar
  35. Greenwood, P. H., 1981, Species flocks and explosive evolution, in Chance, Change and Challenge— The Evolving Biosphere (P. H. Greenwood and P. L. Foley, eds.), pp. 61–74, Cambridge University Press and the British Museum, London.Google Scholar
  36. Hairston, N. G., Li, K. T., and Easter, S. S., 1982, Fish vision and the detection of planktonic prey. Science 218:1240–1242.PubMedCrossRefGoogle Scholar
  37. Heiligenberg, W., and Kramer, U., 1972, Aggressiveness as a function of external stimulation, J. Comp. Physiol. 77:332–340.CrossRefGoogle Scholar
  38. Heiligenberg, W., Kramer, U., and Schultz, V., 1972, The angular orientation of the black eye- bar in Haplochromis burtoni (cichlidae, pisces) and its relevance to aggressivity, Z.Vergl. Physiol. 76:168–176.CrossRefGoogle Scholar
  39. Heine, C., 1901, Demonstration der zapfenmosaiks der menschlichen fovea, Dtsch. Ophthalmol. Ges. Ber. Vers. 19:265–266.Google Scholar
  40. Hueter, R. E., and Gruber, S. H., 1980, Retinoscopy of aquatic eye. Vision Res. 20:197–200.PubMedCrossRefGoogle Scholar
  41. Kahmann, H., 1936, Uber das foveale sehen der Wirbeltiere. I. Uber die fovea centralis und die fovea lateralis bei einigen Wirbeltieren, Albrecht von Graefe’s Arch. Ophthalmol. 135: 265–276.CrossRefGoogle Scholar
  42. Land, M., 1984, Crustacea, in Photoreception and Vision in Invertebrates (M. A. Ali, ed.), pp. 401–438, Plenum Press, New York.Google Scholar
  43. Leong, C. Y., 1969, Quantitative effect of releasers in the attack readiness of the fish Haplochromis burtoni, Z. Vergl. Physiol 65:29–50.CrossRefGoogle Scholar
  44. Liem, K. F., and Osse, J. W. M., 1975, Biological versatility, evolution and food resources, exploitation in African cichlid fishes. Am. Zool 15:427–454.Google Scholar
  45. Lyall, A. H., 1957, The growth of the trout retina, Q. J. Microsc. Sci. 98:101–110.Google Scholar
  46. Marc, R. E., and Sperling, H. G., 1976, Color receptor identities of goldfish cones. Science 191:487–489.PubMedCrossRefGoogle Scholar
  47. Matthiessen, L., 1882, Uber die beziehungen, welche zwishen dem brechungsindex des kernzentrums der krystalllinse und den dimensionen des auges bestehen, Pflugers Arch. Ges. Physiol. 27:510–523.CrossRefGoogle Scholar
  48. Maxwell, J. C., 1854, Some solutions of problems, Camb. Dubl. Math. J. 8:188–195.Google Scholar
  49. Meyer, R. L., 1978, Evidence from thymidine labelling for continuing growth of retina and tectum in juvenile goldfish, Exp. Neurol. 59:99–111.PubMedCrossRefGoogle Scholar
  50. Müller, H., 1952, Bau und Wachstum der Netzhaut des guppy, Lebistes reticulatus, Abt. Allg. Zool. Physiol. Tiere 63:275–324.Google Scholar
  51. Muske, L. F., and Fernald, R. D., 1987a, Control of teleost social signal: Neural basis for differential expression of a color pattern, J. Comp. Physiol. 160:89–97.CrossRefGoogle Scholar
  52. Muske, L. E., and Fernald, R. D., 1987b, Control of teleost social signal: Anatomical and physiological specializations of chromatophores, J. Comp. Physiol. 160:99–107.CrossRefGoogle Scholar
  53. Nuboer, J. F. W., and van Genderen-Takken, H., 1978, The artifact of retinoscopy. Vision Res. 18:1091–1096.PubMedCrossRefGoogle Scholar
  54. Poll, M., 1956, Poissons cichlidae. Result Sci. Explor. Hydrobiol. Lake Tanganika (1946–47) 3:501–619.Google Scholar
  55. Powers, M. K., and Bassi, C. J., 1981, Absolute visual threshold is determined by the proportion of stimulated rods in the growing goldfish retina, Neurosei. Abstr. 7:541.Google Scholar
  56. Pumphrey, R. J., 1961, Concerning vision, in The Cell and Organism (J. A. Ramsey, ed.), pp. 193–208, Cambridge University Press, Cambridge.Google Scholar
  57. Regan, C. T., 1920, The classification of the fishes of the family cichlidae. I. The Tanganyika genera, Annu. Mag. Natl. Hist. 5:33–53.Google Scholar
  58. Scholes, J. H., 1976, Neuronal connections and cellular arrangement in the fish retina, in Neural Principles in Vision (F. Zettler and R. Weiler, eds.), pp. 63–93, Springer-Verlag, BerlinCrossRefGoogle Scholar
  59. Schultze, M., 1866, Zur anatomic und physiologic der retina. Arch. Microsk. Anat. Entwieklungsmech. 2:165–174.Google Scholar
  60. Wagner, H. J., 1974, Development of the retina of Nannacara’anomala, with reference to regional variations in differentiation, Z. Morphol. Tiere 79:113–131.CrossRefGoogle Scholar
  61. Young, T., 1801, On the mechanism of the eye, Philos. Trans. 92:23–88Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Russell D. Fernald
    • 1
    • 2
  1. 1.Institute of NeuroscienceUniversity of OregonEugeneUSA
  2. 2.Stanford UniversityStanfordUSA

Personalised recommendations