Neurogenesis and Maturation of Cell Morphology in the Development of the Mammalian Retina

  • Edward H. Polley
  • Roger P. Zimmerman
  • Richard L. Fortney
Part of the Perspectives in Vision Research book series (PIVR)


The cellular organization and morphology of the adult mammalian retina results from a complex series of interacting developmental events. These events may occur sequentially or simultaneously, alone or in combination. Each individual event of development may have pervasive influences that modify or direct morphogenesis of the retina as a whole, or it may have local effects on birth and differentiation of individual populations of neural and glial cells. The time period during which individual modulatory phenomena may be effective can vary with the stage of development. In this review we limit our discussion to the production of neuroblasts, the maturation of their cellular morphology, and the contributions of their processes to the structure and the circuitry of the adult mammalian retina. The role of cell death in the development of the retina is considered elsewhere in this volume (Chapters 7, 9, and 10).


Retinal Ganglion Cell Amacrine Cell Horizontal Cell Outer Nuclear Layer Inner Nuclear Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, R., 1986, Developmental predetermination of the structural and molecular polarization of photoreceptor cells. Dev. Biol. 117:520–527.PubMedCrossRefGoogle Scholar
  2. Angevine, J. B., Bodian, D., Coulombre, A. J., Eddes, M. V., Hamburger, V., Jacobson, M., Lyser, K. M., Prestige, M. C., Sidman, R. L., Varon, S., and Weiss, P., 1970, Embryonic vertebrate central nervous system: Revised terminology, Anat. Ree. 166:257–261.CrossRefGoogle Scholar
  3. Barber, A. N., 1955 Embryology of the Human Eye, C. V. Mosby, St. Louis.Google Scholar
  4. Barnstable, C. J., Hofstein, R., and Akagawa, K., 1985, A marker of early amacrine cell development in rat retina. Dev. Brain Res. 20:286–290.CrossRefGoogle Scholar
  5. Borwein, B., 1985, Scanning electron microscopy in retinal research. Scan. Electron Microsc. 1:279–301.Google Scholar
  6. Constantine-Paton, M., Blum, A. S., Mendez-Otero, R., and Barnstable, C., 1986, A cell surface molecule distributed in a dorsoventral gradient in the perinatal rat retina. Nature (London) 324:459–462.CrossRefGoogle Scholar
  7. Crisanti, P., Lorinet, A. M., Calothy, G., and Pessac, B., 1985, Glutamic acid decarboxylase activity is stimulated in quail retina neuronal cells transformed by Rous sarcoma virus and is regulated by pp60v-src, EMBO J. 4:1467–1470.PubMedGoogle Scholar
  8. Duke-Elder, S., and Cook, C., 1963, Embryology, in System of Ophthalmology, Volume III. Normal and Abnormal Development (S. Duke-Elder, ed.), pp. 11–57 and 81–99, C. V. Mosby, St. Louis.Google Scholar
  9. Dütting, D., Gierer, A., and Hansman, G., 1983, Self-renewal of stem cells and differentiation of nerve cells in the developing chick retina, Dev. Brain Res. 10:21–32.CrossRefGoogle Scholar
  10. Erickson, P. A., Fisher, S. K., Anderson, D. H., Stern, W. H., and Borgula, G. A., 1983, Retinal detachment in the cat: The outer nuclear and outer plexiform layers. Invest. Ophthalmol. Vis. Sci. 24:927–942.PubMedGoogle Scholar
  11. Famiglietti, E. V. Jr., Kaneko, A., and Tachibana, M., 1977, Neuronal architecture of on and off pathways in carp retina, Science 198:1267–1269.PubMedCrossRefGoogle Scholar
  12. Famiglietti, E. V. Jr., and Kolb, H., 1976, Structural basis ON-and OFF-center responses in retinal ganglion cells, Science 194:193–195.PubMedCrossRefGoogle Scholar
  13. Fujisawa, H., 1982, Formation of gap junctions by stem cells in the developing retina of the clawed frog (Xenopus laevis), Anat. Embryol. (Berlin) 165:141–149.CrossRefGoogle Scholar
  14. Fujita, S., 1963, The matrix cell and cytogenesis in the developing central nervous system, J. Comp. Neurol. 120:37–42.PubMedCrossRefGoogle Scholar
  15. Glücksmann, A., 1940, Differentiation of tadpole eye. Br. J. Ophthalmol. 24:153–178.PubMedCrossRefGoogle Scholar
  16. Grady, E. F., Schwab, M., and Rosenau, W., 1987, Expression of N-myc and c-src during the development of fetal human brain, Cancer Res. 47:2931–2936.PubMedGoogle Scholar
  17. Greiner, J. V., and Weidman, T. A., 1980, Histogenesis of the cat retina. Exp. Eye Res. 30: 439–453.PubMedCrossRefGoogle Scholar
  18. Hickey, T. L., Whikehart, D. R., Jackson, C. A., Hitchcock, P. F., and Paduzzi, J. D., 1983, Tritiated thymidine experiments in the cat: A description of techniques and experiments to define the time-course of radioactive thymidine availability, J.Neurosci. Methods 8:139–147.PubMedCrossRefGoogle Scholar
  19. Hilfer, S. R., 1983, Development of the eye of the chick embryo, Scan. Electron Microsc. 111:1353–1369.Google Scholar
  20. Hinds, J. W., and Hinds, P. L., 1974, Early ganglion cell differentiation in the mouse retina: An electron microscopic analysis utilizing serial sections. Dev. Biol. 37:381–416.PubMedCrossRefGoogle Scholar
  21. Hinds, J. W., and Hinds, P. L., 1978, Early development of amacrine cells in the mouse retina: An electron microscopic, serial section analysis, J. Comp. Neurol. 179:277–300.PubMedCrossRefGoogle Scholar
  22. Hinds, J. W., and Hinds, P. L., 1983, Development of retinal amacrine cells in the mouse embryo: Evidence for two modes of formation, J. Comp. Neurol. 213:1–23.PubMedCrossRefGoogle Scholar
  23. Hinds, J. W., and Ruffett, T. L., 1971, Cell proliferation in the neural tube: An electron microscopic and Golgi analysis in the mouse cerebral vesicle, Z. Zellforsch. 115:226–264.PubMedCrossRefGoogle Scholar
  24. Holt, C. E., Bertsch, T. W., Ellis, H. M., and Harris, W. A., 1988, Cellular determination in the Xenopus retina is independent of lineage and birth date, Neuron 1:15–26.PubMedCrossRefGoogle Scholar
  25. Johns, P., Rusoff, A., and Dubin, M. W., 1979, Postnatal neurogenesis in the kitten retina, J. Comp. Neurol. 187:545–556.PubMedCrossRefGoogle Scholar
  26. Kolb, H., Nelson, R., and Mariani, A., 1981, Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study, Vision Res. 21:1081–1114.PubMedCrossRefGoogle Scholar
  27. Koontz, M. A., and Hendrickson, A. E., 1987, Stratified distribution of synapses in the inner plexiform layer of the primate retina, J. Comp. Neurol. 263:581–592.PubMedCrossRefGoogle Scholar
  28. Le Douarin, N. M., 1986, Cell line segregation during peripheral nervous system ontogeny, Science 231:1515–1522.PubMedCrossRefGoogle Scholar
  29. Levitt, P. R., Cooper, M. L., and Rakic, P., 1981, Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: An ultrastructural immunoperoxidase analysis, J. Neuro sci. 1:27–39.Google Scholar
  30. Lia, B., Williams, R. W., and Chalupa, L. M., 1987, Formation of retinal ganglion cell topography during prenatal development. Science 236:848–850.PubMedCrossRefGoogle Scholar
  31. Lynch, S. A., Brugge, J. S., and Levine, J. M., 1986, Induction of altered c-src product during neural differentiation of embryonal carcinoma cells. Science 234:873–876.PubMedCrossRefGoogle Scholar
  32. Mann, I., 1969, The Development of the Human Eye, Grune & Stratton, New York.Google Scholar
  33. Marc, R. E., 1986, Neurochemical stratification in the inner plexiform layer of the vertebrate retina. Vision Res. 26:223–238.PubMedCrossRefGoogle Scholar
  34. Marshak, D., Ariel, M., and Dowling, J. E., 1984, Laminar distribution of retinal ganglion cell inputs in the goldfish. Invest. Ophthalmol. Vis. Sci. (Suppl.) 25:284.Google Scholar
  35. Martinez, R., Mathey-Prevot, B., Bernards, A., and Baltimore, D., 1987, Neuronal pp60c-src contains a six-amino acid insertion relative to its non-neuronal counterpart. Science 237:411–415.PubMedCrossRefGoogle Scholar
  36. Maslim, J., and Stone, J., 1986, Synaptogenesis in the retina of the cat. Brain Res. 373:35–46.PubMedCrossRefGoogle Scholar
  37. Mastronarde, D. N., Thibeault, M. A., and Dubin, M. W., 1984, Non-uniform postnatal growth of the cat retina, J. Comp. Neurol. 228:598–608.PubMedCrossRefGoogle Scholar
  38. McArdle, C. B., Dowling, J. E., and Masland, R. H., 1977, Development of outer segments and synapses in the rabbit retina, J. Comp. Neurol. 175:253–274.PubMedCrossRefGoogle Scholar
  39. Morest, D. K., 1970, The pattern of neurogenesis in the retina of the rat, Z. Anat. Entwicklungsgesch. 131:45–67.PubMedCrossRefGoogle Scholar
  40. Morse, D. E., and McCann, P. S., 1984, Neuroectoderm of the early embryonic rat eye. Invest. Ophthalmol. Vis. Sci. 25:899–907.PubMedGoogle Scholar
  41. Morrison, J. D., 1982, Postnatal development of the area centralis of the kitten retina: An electron microscopic study, J. Anat. 135:255–271.PubMedGoogle Scholar
  42. Negishi, K., Teranishi, T., and Kato, S., 1982, New dopaminergic and indoleamine-accumulating cells in the growth zone of goldfish retinas after neurotoxic destruction. Science 216:747–749.PubMedCrossRefGoogle Scholar
  43. Nelson, R., Famiglietti, E. V. Jr., and Kolb, H., 1978, Intracellular staining reveals different levels of stratification for on-center and off-center ganglion cells in the cat retina, J.Neurophysiol. 41:472–483.PubMedGoogle Scholar
  44. Patterson, P. H., 1978, Environmental determination of autonomic neurotransmitter functions, Annu. Rev. Neurosci. 1:1–17.PubMedCrossRefGoogle Scholar
  45. Polley, E. H., Walsh, C., and Hickey, T. L., 1982, Neurogenesis in the inner nuclear layer (INL) and outer nuclear layer (ONL) of the cat retina: A study using 3H-thymidine, Invest. Ophthalmol Vis. Sci. (Suppl.) 22:114 (Abstract).Google Scholar
  46. Polley, E. H., Zimmerman, R. P., and Fortney, R. L., 1985, Development of the outer plexiform layer (OPL) of the cat retina, Soc. Neurosci. Abstr. 11:14 (Abstract).Google Scholar
  47. Polley, E. H., Zimmerman, R. P., and Fortney, R. L., 1986, Interaction of a temporal sequence of cell birthdays and a spatial gradient of morphological maturation in the mammalian retina. Invest. Ophthalmol Vis. Sci. (Suppl) 27:326 (Abstract).Google Scholar
  48. Polyak, S. L., 1941, The Retina, University of Chicago Press, Chicago.Google Scholar
  49. Rakic, P., 1982, Organizing principles for development of primate cerebral cortex, in Organizing Principles of Neural Development (S. C. Sharma, ed.), pp. 21–48, Plenum Press, New York.Google Scholar
  50. Ramoa, A. S., Campbell, G., and Shatz, C. J., 1987, Transient morphological features of identified ganglion cells in living fetal and neonatal retina. Science 237:522–525.PubMedCrossRefGoogle Scholar
  51. Ramony Cajal, S., 1893, La retine des vertebres, English translation by D. Maguire and R. W. Rodieck, Appendix I in The Vertebrate Retina, Principles of Structure and Function (R. W. Rodieck, ed.), W. H. Freeman, San Francisco, 1973.Google Scholar
  52. Ramony Cajal, S., 1929, Studies on Vertebrate Neurogenesis (translated by L. Guth), C. C. Thomas, Springfield, IL, 1960.Google Scholar
  53. Rapaport, D. H., and Stone, J., 1984, The area centralis of the retina in the cat and other mammals: Focal point for function and development of the visual system, Neuro science 11:289–301.Google Scholar
  54. Raymond, P. A., and Rivlin, P. K., 1987, Germinal cells in the goldfish retina that produce rod photoreceptors, Dev. Biol. 122:120–138.PubMedCrossRefGoogle Scholar
  55. Ready, D. F., Tomlinson, A., and Lebovitz, R. M., 1986, Building an ommatidium: Geometry and genes, in Development of Order in the Visual System (S. R. Hilfer and J. M. Sheffield, eds.), pp. 97–125, Springer-Verlag, New York.CrossRefGoogle Scholar
  56. Reh, T. A., 1987, Cell-specific regulation of neuronal production in the larval frog retina, J. Neuro sci. 7:3317–3324.Google Scholar
  57. Reh, T. A., and Tully, T., 1986, Regulation of tyrosine hydroxylase containing amacrine cell number in larval frog retina. Dev. Biol. 114:463–469.PubMedCrossRefGoogle Scholar
  58. Robinson, S. R., 1987, Ontogeny of the area centralis in the cat, J. Comp. Neurol. 255:50–67.PubMedCrossRefGoogle Scholar
  59. Robinson, S. R., Rappaport, D. H., and Stone, J., 1985, Cell division in the developing cat retina occurs in two zones. Dev. Brain Res. 19:101–109.CrossRefGoogle Scholar
  60. Sauer, F. C., 1935, Mitosis in the neural tube, J. Comp. Neurol. 62:377–405.CrossRefGoogle Scholar
  61. Schnitzer, J., and Rusoff, A. C., 1984, Horizontal cells of the mouse retina contain glutamic acid decarboxylase-like immunoreactivity during early developmental stages, J. Neuro sci. 4:2948–2955.Google Scholar
  62. Scholes, J., 1976, Neuronal connections and cellular arrangements in the fish retina, inNeural Principles in Vision (F. Zettler and R. Weiler, eds.), pp. 63–93, Springer-Verlag, New York.CrossRefGoogle Scholar
  63. Scholes, J., 1987, Uncertainties in the retina. Nature 328:114–115.PubMedCrossRefGoogle Scholar
  64. Sheffield, J. B., and Fischman, D. A., 1970, Intercellular junctions in the developing neural retina of the chick embryo, Z. Zellforsch. 104:405–418.PubMedCrossRefGoogle Scholar
  65. Sidman, R. L., 1961, Histogenesis of mouse retina studied with thymidine-3H, The Structure of the Eye (G. Smelser, ed.). Academic Press, New York.Google Scholar
  66. Sorge, L. K., Levy, B. T., and Maness, P. F., 1984, pp60c-srcis is developmentally regulated in the neural retina. Cell 36:249–257.PubMedCrossRefGoogle Scholar
  67. Steinberg, R. H., Reid, M., and Lacy, P. L., 1973, The distribution of rods and cones in the retina of the cat (Felis domesticus), J. Comp. Neurol. 148:229–248.PubMedCrossRefGoogle Scholar
  68. Stone, J., Maslim, J., and Rapaport, D., 1984, The development of the topographical organisation of the cat’s retina, inDevelopment of Visual Pathways in Mammals (J. Stone, B. Dreher, and D. H. Rapaport, eds.), pp. 3–21, Alan R. Liss, New York.Google Scholar
  69. Tomlinson, A., and Ready, D. F., 1986, Sevenless, a cell-specific homoeotic mutation of the Drosophila eye, Science 231:400–402.PubMedCrossRefGoogle Scholar
  70. Turner, D. L., and Cepko, C. L., 1987, A common progenitor for neurons and glia persists in rat retina late in development, Nature (London) 328:131–136.CrossRefGoogle Scholar
  71. Vardimon, L., Fox, L. E., and Moscona, A. A., 1986, Accumulation of c-src mRNA is developmentally regulated in embryonic neural retina, Mol. Cell Biol. 6:4109–4111.PubMedGoogle Scholar
  72. Vogel, M., 1978, Postnatal development of the cat’s retina. Adv. Anat. Emhryol. Cell Biol. 54(4): 1–107.Google Scholar
  73. Walsh, C., Polley, E. H., Hickey, T. L., and Guillery, R. W., 1983, Generation of cat retinal ganglion cells in relation to central pathways, Nature (London) 302:611–614.CrossRefGoogle Scholar
  74. Wässle, H., and Boycott, B., 1978, Receptor contacts of horizontal cells in the retina of the domestic cat, Proc. R. Soc. London Sec. B 203:247–267.CrossRefGoogle Scholar
  75. Wässle, H., and Reimann, H. J., 1978, The mosaic of nerve cells in mammalian retina, Proc. R. Soc. London Ser. B 200:441–461.CrossRefGoogle Scholar
  76. Wässle, H., Peichl, L., and Boycott, B., 1978, Topography of horizontal cells in the retina of the domestic cat, Proc. R. Soc. London Ser. B 203:269–291.CrossRefGoogle Scholar
  77. Wässle, H., Chun, M. H., and Müller, F., 1987, Amacrine cells of the ganglion cell layer of the cat retina, J. Comp. Neurol. 265:391–408.PubMedCrossRefGoogle Scholar
  78. Walsh, C., and Polley, E. H., 1985, The topography of ganglion cell production in the cat’s retina, J. Neuro sci. 5:741–750.Google Scholar
  79. Wetts, R., and Eraser, S. E., 1988, Multipotent precursors can give rise to all major cell types of the frog retina, Science 239:1142–1145.PubMedCrossRefGoogle Scholar
  80. Whiteley, H. E., and Young, S., 1986, The external limiting membrane in developing normal and dysplastic canine retina, Tissue Cell 18:231–239.PubMedCrossRefGoogle Scholar
  81. Williams, R. W., Bastiani, M. J., Lia, B., and Chalupa, L. M., 1986, Growth cones, dying axons, and developmental fluctuations in the fiber population of the cat’s optic nerve, J. Comp. Neurol 246:32–69.PubMedCrossRefGoogle Scholar
  82. Wong, R. O., and Hughes, A., 1987, The morphology, number, and distribution of a large population of confirmed displaced amacrine cells in the adult cat retina, J. Comp. Neurol. 255:159–177.PubMedCrossRefGoogle Scholar
  83. Young, R. W., 1983, The life history of retinal cells. Trans. Am. Ophthalmol. Soc. 81:193–228.PubMedGoogle Scholar
  84. Young, R. W., 1985, Cell differentiation in the retina of the mouse, Anat. Ree. 212:199–205.CrossRefGoogle Scholar
  85. Zimmerman, R. P., 1983, The organization of the ganglion cell dendritic grids in the retina of Astronotus, Soc. Neurosci. Ahstr. 9:802 (Abstract).Google Scholar
  86. Zimmerman, R. P., Polley, E. H., and Fortney, R. L., 1985, Stages in the development of the inner plexiform layer of the cat retina, Soc. Neurosci. Abstr. 11:14 (Abstract).Google Scholar
  87. Zimmerman, R. P., Polley, E. H., and Fortney, R. L., 1987, The ultrastructure of the cat’s retina during ganglion cell neurogenesis. Invest. Ophthalmol. Vis. Sci. (Suppl.) 28:286 (Abstract).Google Scholar
  88. Zimmerman, R. P., Polley, E. H., and Fortney, R. L., 1988, Cell birthdays and rate of differentiation of ganglion and horizontal cells of the developing cat’s retina, J. Comp. Neurol. 274:77–90PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Edward H. Polley
    • 1
  • Roger P. Zimmerman
    • 2
    • 3
  • Richard L. Fortney
    • 4
    • 5
  1. 1.Departments of Anatomy and Cell Biology, and Ophthalmology, College of MedicineUniversity of IllinoisChicagoUSA
  2. 2.Departments of Neurological Sciences and PhysiologyRush Medical CollegeChicagoUSA
  3. 3.Department of Anatomy and Cell Biology, College of MedicineUniversity of IllinoisChicagoIllinoisUSA
  4. 4.Department of Neurological SciencesRush Medical CollegeChicagoUSA
  5. 5.Department of Anatomy and Cell Biology, College of MedicineUniversity of IllinoisChicagoUSA

Personalised recommendations