Ultrastructure of the Myometrium

  • W. C. Cole
  • R. E. Garfield


The concept that a well-developed appreciation of structure is an essential prerequisite to an understanding of function permeates research into all physical processes but is especially true for the biological sciences. The electron microscopic and x-ray diffraction studies conducted on the myometrium during the past 25 years have provided important insights into the physiology of this organ. This chapter reviews our understanding of the ultrastructure of the myometrium. Particular emphasis is placed on the development and functional significance of gap junctions between myometrial cells, a topic not covered in previous editions of this book because of its relatively recent development. We believe that the observation that gap junctions appear in large numbers between myometrial cells during the onset and progression of labor (Garfield et al., 1977) was a major step forward in our understanding of the circumstances that control parturition. We also provide a detailed description of the structure of the contractile apparatus and its relationship to the plasma membrane and cytoskeleton. Several important observations have been made in this area since the last edition of this book.


Smooth Muscle Smooth Muscle Cell Dense Body Thin Filament Dense Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, Y., and Tomita, T., 1968, Cable properties of smooth muscle, J. Physiol. ( Lond. ) 196: 87–102.Google Scholar
  2. Althoff, R. W., and Albert, E. N., 1970, Ultrastructural changes in mouse myometrium during pregnancy, Am. J. Obstet. Gynecol. 108: 1224–1233.PubMedGoogle Scholar
  3. Ashton, F. T., Somlyo, A. V., and Somlyo, A. P., 1975, The contractile apparatus of vascular smooth muscle; intermediate high voltage stereoelectron microscopy, J. Mol. Biol. 98: 17–29.PubMedGoogle Scholar
  4. Bagby, R. M., 1980, Double immunofluorescent staining of isolated smooth muscle cells, Histochemistry 69: 113–130.PubMedGoogle Scholar
  5. Bagby, R. M., 1983, Organization of contractile/cytoskeletal elements, in: The Biochemistry of Smooth Muscle ( N. L. Stephens, ed.), CRC Press, Boca Raton, FL, pp. 1–84.Google Scholar
  6. Bagby, R. M., and Corey, M. D., 1981, Vertebrate contractile elements attach to an axial cytoskeleton, Physiologist 24: 89–95.Google Scholar
  7. Bagby, R. M., Young, A. M., Dotson, R. S., Fisher, B. A., and McKinnon, K., 1971, Contraction of single smooth muscle cells from Bufo marinus stomach, Nature 234: 351–352.PubMedGoogle Scholar
  8. Batra, S. C., 1973, The role of mitochondrial calcium uptake in contraction and relaxation of the human myometrium, Biochim. Biophys. Acta 305: 428–432.PubMedGoogle Scholar
  9. Beams, H. W., and Kessel, R. G., 1968, The Golgi apparatus; structure and function, Int. Rev. Cytol. 23: 209–276.PubMedGoogle Scholar
  10. Benedetti, E. L., and Emmelot, P., 1968, Hexagonal array of subunits in tight junctions separated from isolated rat liver plasma membranes, J. Cell Biol. 38: 15–22.PubMedGoogle Scholar
  11. Bergman, R. A., 1968, Uterine smooth muscle fibers in castrate and estrogen treated rats, J. Cell Biol. 36: 636–648.Google Scholar
  12. Blennerhassett, M. G., Kannan, M. S., and Garfield, R. E., 1987, Regulation of gap junctions in myometrial smooth muscle, Ann. N. Y. Acad. Sci. 484: 196–204.Google Scholar
  13. Bo, W. J., Odor, D. L., and Rothrock, M., 1968, The fine structure of uterine smooth muscle of the rat uterus at various time intervals following a single injection of estrogen, Am. J. Anat. 123: 369–384.Google Scholar
  14. Bond, M., and Somlyo, A V., 1982, Dense bodies and actin polarity in vertebrate smooth muscle, J. Cell Biol. 95: 403–413.PubMedGoogle Scholar
  15. Bond, M., Kitazawa, T., Somlyo, A. V., and Somlyo, A. P., 1984a, Release and recycling of calcium by the sarcoplasmic reticulum in guinea pig portal vein smooth muscle, J. Physiol. ( Lond. ) 355: 677–695.Google Scholar
  16. Bond, M., Somlyo, A. V., and Somlyo, A. P., 1984b, Total cytoplasmic calcium in relaxed and maximally contracted rabbit portal vein smooth muscle, J. Physiol (Lond.) 357: 185–201.Google Scholar
  17. Bozler, E., 1938, Electrical stimulation and conduction of excitation in smooth muscle, Am. J. Physiol. 122: 616–635.Google Scholar
  18. Bozler, E., 1940, Influence of estrone on the electrical characteristics and motility of uterine muscle, Endocrinology 29: 225–238.Google Scholar
  19. Bozler, E., and Cottrell, C. L., 1937, The birefringence of muscle and its variation during contraction, J. Cell. Comp. Physiol. 10: 165–182.Google Scholar
  20. Brandes, D., and Anton, E., 1969, Lysosomes in uterine involution: Intracytoplasmic degragation of myofilaments and collagen, J. Gerentol. 24: 55–69.Google Scholar
  21. Buchanan, G. D., and Garfield, R. E., 1984, Myometrial ultrastructure and innervation in Myotis lucifugus, the little brown bat, Anat. Rec. 210: 463–475.Google Scholar
  22. Burden, H. W., Capps, M. L., and Lawrence, I. E., 1979, Gap junctions in the myometrium of pelvic-neurectomized rats with blocked parturition, Am. J. Physiol. 156: 105–111.Google Scholar
  23. Burghardt, R. C., Matheson, R. L., and Gandy, D., 1984a, Gap junction modulation in rat uterus. I. Effects of estrogens on myometrial and serosal cells, Biol. Reprod. 30: 239–248.Google Scholar
  24. Burghardt, R. C., Mitchell, P. A., and Kurten, R., 1984b, Gap junction modulation in rat uterus. I. Effects of antiestrogens on myometrial and serosal cells, Biol. Reprod. 30: 249–255.Google Scholar
  25. Burnstock, G., 1970, Structure of smooth muscle and its innervation, in: Smooth Muscle ( E. Bulbring, A. F. Brading, A. W. Jones, and T. Tomita, eds.), Williams & Wilkins, Baltimore, pp. 1–70.Google Scholar
  26. Caspar, D. L. D., Goodenough, D. A., Makowski, L., and Phillips, W. C., 1977, Gap junction structures. I. Correlated electron microscopy and x-ray diffraction, J. Cell Biol. 74: 605–611.PubMedGoogle Scholar
  27. Chalcroft, J. P., and Bullivant, S., 1970, An interpretation of liver cell membrane and junction structure based on observation of freeze-fracture replicas of both sides of the structure, J. Cell Biol. 47: 49–57.PubMedGoogle Scholar
  28. Challis, J. R. G., and Lye, S. J., 1986, Parturition, in: Oxford Review of Reproductive Biology (J. R. Clarke, ed.), Oxford University Press, London, pp. 61–82.Google Scholar
  29. Chamley-Campbell, J., Campbell, G. R., and Ross, R., 1979, The smooth muscle cell in culture, Physiol Rev. 59: 1–61.PubMedGoogle Scholar
  30. Chance, B., 1963, Energy Linked Functions of Mitochondria, Academic Press, New York.Google Scholar
  31. Cohen, D. M., and Murphy, R. A., 1978, Differences in cellular contractile protein contents and force generation in porcine smooth muscles, J. Gen. Physiol 72: 369–380.Google Scholar
  32. Cole, W. C., and Garfield, R. E., 1986a, Methods for analysis of myometrial gap junction structure and function, in: Animal Models in Fetal Medicine, Vol. 5 ( P. W. Nathanielz, ed.), Perinatology Press, New York, pp. 31–65.Google Scholar
  33. Cole, W. C., and Garfield, R. E., 1986b, Evidence for physiological regulation of myometrial gap junction permeability, Am. J. Physiol 251: C411–420.PubMedGoogle Scholar
  34. Cole, W. C., and Garfield, R. E., 1988, Effects of calcium ionophore, A23187, and calmodulin antagonists on cell-to-cell communication between rat myometrial smooth muscle cells, Biol Reprod. 38: 55–62.PubMedGoogle Scholar
  35. Cole, W. C., Garfield, R. E., and Kirkaldy, J. S., 1985, Gap junctions and direct intercellular communication between rat uterine smooth muscle cells, Am. J. Physiol 249: C20–31.PubMedGoogle Scholar
  36. Cooke, P. H., 1976, A filamentous cytoskeleton in vertebrate smooth muscle fibers, J. Cell Biol 68: 539–556.PubMedGoogle Scholar
  37. Cooke, P. H., and Fay, F. S., 1972, Correlation between fiber length, ultrastructure, and the length-tension relationship of mammalian smooth muscle, J. Cell Biol 52: 105–116.PubMedGoogle Scholar
  38. Cooke, P. H., Kargacin G., Craig, R. F., Fogarty, K. E., Hagen, S., and Fay, F. S., 1987, Molecular structure and organization of filaments in single, skinned smooth muscle cells, in: Regulation and Contraction of Smooth Muscles ( N. L. Stephens, ed.), Alan R. Liss, New York, pp. 1–25.Google Scholar
  39. Craig, R., and Mengerman, J., 1977, Assembly of smooth muscle myosin into side-polar filaments, J. Cell Biol 75: 990–996.PubMedGoogle Scholar
  40. Creed, K., 1979, Functional diversity of smooth muscle, Br. Med. Bull 35: 243–248.Google Scholar
  41. Csapo, A. I., 1962, Smooth muscle as a contractile unit, Physiol Rev. 42 (Suppl. 5): 7–33.Google Scholar
  42. Csapo, A. I., 1981, Force of Labor, in: Principles and Practice of Obstetrics and Perinatology ( L. Iffy and H. A. Kaminetzky, eds.), John Wiley & Sons, New York, pp. 761–799.Google Scholar
  43. Daniel, E. E., Daniel, V. P., Duchon, G., Garfield, R. E., Nichols, M., Malhotra, S. K., and Oki, M., 1976, Is the nexus necessary for cell-to-cell coupling of smooth muscle? J. Membr. Biol 28: 207–239.Google Scholar
  44. Dahl, G. P., and Berger, W., 1978, Nexus formation in the myometrium during parturition and induced by estrogen, Cell Biol Int. Rep. 2: 381–387.Google Scholar
  45. Dahl, G. P., Azarnia, R., and Werner, R., 1980, De novo construction of cell-to-cell channels, In Vitro 16: 1068–1075.Google Scholar
  46. Dahl, G. P., Levine, R., and Werner, R., 1987, Cell-to-cell channels made from gap junction specific mRNA are gated, Biophys. J. 51: 39a.Google Scholar
  47. Davies, P. J., Wallach, D., Willingham, M. C., and Pastan, I., 1980, Filamin-actin interaction, J. Biol. Chem. 253: 4036–4041.Google Scholar
  48. Demianczuk, N., Towell, M., and Garfield, R. E., 1984, Myometrial electrophysiologic activity and gap junctions in the pregnant rabbit, Am. J. Obstet. Gynecol. 149: 485–493.PubMedGoogle Scholar
  49. Dessouky, A. D., 1968, Electron microscopy studies of the myometrium of the guinea pig: The smooth muscle of the myometrium before and during pregnancy, Am. J. Obstet. Gynecol. 100: 1117–1123.Google Scholar
  50. Dessouky, A. D., 1976, Ultrastructural observations of the human uterine smooth muscle cells during gestation, Am. J. Obstet. Gynecol. 125: 1099–1107.PubMedGoogle Scholar
  51. Devine, C. E., and Rayns, D. G., 1975, Freeze-fracture studies of membrane systems in vertebrate muscle: Smooth muscle, J. Ultrastruct. Res. 51: 293–306.PubMedGoogle Scholar
  52. Devine, C. E., and Somlyo, A. P., 1971, Thick filaments in vascular smooth muscle, J. Cell Biol. 49: 636–649.PubMedGoogle Scholar
  53. Devine, C. E., Somlyo, A. V., and Somlyo, A. P., 1972, Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscle, J. Cell Biol. 52: 690–718.PubMedGoogle Scholar
  54. Dewey, M. M., and Barr, L., 1962, Intercellular connection between smooth muscle cells: The nexus, Science 137: 670–672.Google Scholar
  55. Downing, S. J., and Sherwood, O. D., 1985a, The physiological role of relaxin in the pregnant rat. I. The influence of relaxin on parturition, Endocrinology 116: 1200–1205.PubMedGoogle Scholar
  56. Downing, S. J., and Sherwood, O. D., 1985b, The physiological role of relaxin in the pregnant rat. II. The influence of relaxin on uterine contractile activity, Endocrinology 116: 1205–1211.Google Scholar
  57. Driska, S. P., and Murphy, R. A., 1978, Estimate of cellular force generation in an arterial smooth muscle with high actin: myosin ratio, Blood Vessels 15: 26–32.PubMedGoogle Scholar
  58. Elliott, G. F., and Lowy, J., 1968, Organization of actin in a mammalian smooth muscle, Nature 219: 156–157.PubMedGoogle Scholar
  59. Fay, F. S., and Cooke, P. H., 1973. Reversible disaggregation of myofilaments in vertebrate smooth musles, J. Cell Biol. 56: 399–411.PubMedGoogle Scholar
  60. Fay, F. S., Fujiwara, K., Rees, D. D., and Fogarty, K. E., 1983, Distribution of a-actinin in single isolated smooth muscle cells, J. Cell Biol. 96: 783–795.PubMedGoogle Scholar
  61. Fisher, B. A., and Bagby, R. M., 1977, Reorientation of myofilaments during contraction of a vertebrate smooth muscle, Am. J. Physiol. 232: C5–14.PubMedGoogle Scholar
  62. Franzini-Armstrong, C., 1970, Studies of the triad. I. Structure of the junction in frog twitch fibers, J. Cell Biol. 47: 488–499.PubMedGoogle Scholar
  63. Frederici, H. H., and DeCloux, R. J., 1968, The early response of immature rat myometrium to estrogenic stimulation, J. Ultrastruct. Res. 22: 402–412.Google Scholar
  64. Fuchs, A. R., 1978, Hormonal control of myometrial function during pregnancy and parturition, Acta Endo-crinol. ( Kbh.) [Suppl. J 221: 1–69.Google Scholar
  65. Gabella, G., 1976a, The force generated by a visceral smooth muscle, J. Physiol. ( Lond. ) 262: 199–213.Google Scholar
  66. Gabella, G., 1976b, Quantitative morphological study of smooth muscle cells of taenia coli. Structural changes in smooth muscle cells during isotonic contraction, Cell Tissue Res. 170: 161–201.PubMedGoogle Scholar
  67. Gabella, G., 1977, Arrangement of smooth muscle cells and intramuscular septa in the taenia coli, Cell Tissue Res. 184: 195–204.PubMedGoogle Scholar
  68. Gabella» G., 1979a, Hypertrophic smooth muscles. IV. Myofilaments, intermediate filaments and some me-chanical properties. Cell Tissue Res. 201: 27–28.Google Scholar
  69. Gabella, G., 1979b, Smooth muscle cell junctions and structural aspects of contraction, Br. Med. Bull. 35: 213–218.PubMedGoogle Scholar
  70. Gabella, G., 1981, Structure of smooth muscles, in: Smooth Muscle ( E. Bulbring, A. F. Brading, A. W. Jones, and T. Tomita, eds.), Edward Arnold, London, pp. 1–46.Google Scholar
  71. Gabella, G., 1984, Structural apparatus for force transmission in smooth muscles, Physiol. Rev. 64: 455–477.PubMedGoogle Scholar
  72. Gabella, G., and Blundell, D., 1978, Effect of stretch and contraction on caveolae of smooth muscle cells, Cell Tissue Res. 190: 255–271.PubMedGoogle Scholar
  73. Garfield, R. E., 1984, Myometrial ultrastructure and uterine contractility, in: Uterine Contractility ( S. Bottari, J. P. Thomas, A. Vokaer, and R. Vokaer, eds.), Masson USA, New York, pp. 81–109.Google Scholar
  74. Garfield, R. E., 1985, Cell-to-cell communication, in: Calcium and Contractility ( A. K. Grover and E. E. Daniel, eds.) Humana Press, Clifton, NJ, pp. 143–173.Google Scholar
  75. Garfield, R. E., 1986, Structural studies on innervation of nonpregnant rat uterus, Am. J. Physiol. 251: C41–54.PubMedGoogle Scholar
  76. Garfield, R. E., and Baulieu, E. E., 1987, The antiprogesterone steroid RU 486: A short pharmacological and clinical review with emphasis on the interruption of pregnancy, Baill. Clin. Endocrinol. Metab. 1: 207–214.Google Scholar
  77. Garfield, R. E., and Daniel, E. E., 1974, The structural basis for electrical coupling (cell-to-cell contacts) in rat myometrium, Gynecol. Invest. 5: 284–300.Google Scholar
  78. Garfield, R. E., and Daniel, E. E., 1977a, Relation of membrane vesicles to volume control and Na+ transport in smooth muscle: Effect of metabolic and transport inhibition on fresh tissues, J. Mechanochem. Cell Motil. 4: 115–155.Google Scholar
  79. Garfield, R. E., and Daniel, E. E., 1977b, Relation of membrane vesicles to volume control and Na+ transport in smooth muscle: Studies on Na+ rich tissues, J. Mechanochem. Cell Motil. 4: 157–176.Google Scholar
  80. Garfield, R. E., and Hayashi, R. H., 1981, Appearance of gap junctions in the myometrium of women during labor, Am. J. Obstet. Gynecol. 140: 254–260.PubMedGoogle Scholar
  81. Garfield, R. E., and Somlyo, A. P., 1977, Golgi apparatus and lectin-binding sites: Effects of lasalocid (X537A), Exp. Cell Res. 109: 167–177.Google Scholar
  82. Garfield, R. L., and Somlyo, A. P., 1985, Structure of smooth muscle, in: Calcium and Contractility ( A. K. Grover and E. E. Daniel, eds.), Humana Press, New Jersey, pp. 1–36.Google Scholar
  83. Garfield, R. E., Sims, S. M., and Daniel, E. E., 1977, Gap junctions: Their presence and necessity in myometrium during parturition, Science 198: 958–960.PubMedGoogle Scholar
  84. Garfield, R. E., Sims, S. M., Kannan, M. S., and Daniel, E. E., 1978, The possible role of gap junctions in the activation of the myometrium during parturition, Am. J. Physiol. 235: C168–179.PubMedGoogle Scholar
  85. Garfield, R. E., Rabideau, S., Challis, J. R. G., and Daniel, E. E., 1979, Hormonal control of gap junctions in sheep myometrium, Biol. Reprod. 21: 999–1007.PubMedGoogle Scholar
  86. Garfield, R. E., Kannan, M. S., and Daniel, E. E., 1980a, Gap junction formation in myometrium: Control by estrogens, progesterone and prostaglandins, Am. J. Physiol. 7: C81–89.Google Scholar
  87. Garfield, R. E., Merrett, D., and Grover, A. K., 1980b, Studies on gap junction formation and regulation in myometrium, Am. J. Physiol 239: 0217–228.Google Scholar
  88. Garfield, R. E., Daniel, E. E., Dukes, M., and Fitzgerald, J. D., 1982, Changes in gap junctions in myo-metrium of guinea pigs at parturition and abortion, Can. J. Physiol. Pharmacol. 60: 335–341.PubMedGoogle Scholar
  89. Garfield, R. E., Gasc, J. M., and Baulieu, E. E., 1987, Effects of the antiprogesterone RU 486 on preterm birth in the rat, Am. J. Obstet. Gynecol. 157: 1281–1285.PubMedGoogle Scholar
  90. Geiger, B., Tokuyasu, K. T., Dutton, A. H., and Singer, S. J., 1980, Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes, Proc. Natl. Acad. Sci. U. S. A. 77: 4127–4137.PubMedGoogle Scholar
  91. Goodenough, D. A., and Stoeckinius, W., 1972, The isolation of mouse hepatocyte gap junctions. Preliminary chemical characterization and x-ray diffraction, J. Cell Biol. 57: 54–67.Google Scholar
  92. Goodford, P. J., 1970, Ion movements in smooth muscle, in: Membranes and Ion Transport, Vol. 2 ( E. Bittar, ed.), Wiley-Interscience, New York, pp. 33–74.Google Scholar
  93. Goodford, P. J., and Wolowyk, M. W., 1972, Localization of cation interactions in the smooth muscle of the guinea pig taenia coli, J. Physiol. ( Lond. ) 224: 521–535.Google Scholar
  94. Gorski, J., and Gannon, F., 1976, Current models of hormone action: A critique, Annu. Rev. Physiol. 38: 425–450.Google Scholar
  95. Hand, A. R., and Oliver, C., 1977, Cytochemical studies on GERL and its role in secretory granule formation in exocrine pancreas, Histochem. J. 9: 375–386.Google Scholar
  96. Hanson, J., and Lowy, J., 1963, The structure of F-actin and of actin filaments isolated from muscle. J. Mol. Biol. 6: 46–60.Google Scholar
  97. Heuser, J. E., and Kirshner, M. W., 1980, Filament organization revealed in platinum replicas of freeze-dried cytoskeletons, J. Cell Biol. 86: 212–234.PubMedGoogle Scholar
  98. Hinssen, H., D’Haese, J., Small, J. V., and Sobieszek, A., 1978, Mode of filament assembly of myosins from muscle and nonmuscle cells, J. Ultrastruct. Res. 64: 282–289.Google Scholar
  99. Hirokawa, N., and Tilney, L. G., 1982, Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear, J. Cell Biol. 95: 149–261.Google Scholar
  100. Huxley, A. F., 1988, Muscular contraction, Annu. Rev. Physiol. 50: 1–16.PubMedGoogle Scholar
  101. Ishikawa, H., Bischoff, R., and Holzer, H., 1969, Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell Biol. 43: 312–328.PubMedGoogle Scholar
  102. Kelly, R. E., and Rice, R. V., 1968, Localization of myosin filaments in smooth muscle, J. Cell Biol. 37: 105–116.PubMedGoogle Scholar
  103. Kowarski, D., Shuman, H., Somlyo, A. P., and Somlyo, A. V., 1985, Calcium release by norepinephrine from central sarcoplasmic reticulum in rabbit main pulmonary artery smooth muscle. J. Physiol. ( Lond. ) 366: 153–175.PubMedGoogle Scholar
  104. Kreutziger, G. O., 1968, Freeze-etching of intercellular junctions of mouse liver, in: 26th Proceedings of the Electron Microscopy Society of America, Claitors Publishing Division, Baton Rouge, LA, p. 138.Google Scholar
  105. Larsen, W. J., 1977a, Structural diversity of gap junctions: A review. Tissue Cell 9: 373–394.PubMedGoogle Scholar
  106. Larsen, W. J., 1977b, Gap junctions and hormone action, in: Transport of Ions and Water in Epithelia ( B. J. Wall, J. L. Oschmanm, and B. Moreton, eds.), Academic Press, London, pp. 333–361.Google Scholar
  107. Larsen, W. J., 1983, Biological implications of gap junction structure, distribution, and composition: A review, Tissue Cell 15: 645–671.PubMedGoogle Scholar
  108. Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature 283: 249–256.PubMedGoogle Scholar
  109. Leblond, C. P., and Bennett, G., 1977, Role of the Golgi apparatus in terminal glycosylation, in: International Cell Biology ( B. R. Brinkley and K. R. Porter, eds.), Rockefeller University Press, New York, pp. 145–157.Google Scholar
  110. Lehninger, A. L., 1965, Mitochondrion: Molecular Basis for Structure and Function, Benjamin, New York.Google Scholar
  111. Liggins, G. C., 1979, Initiation of parturition, Br. Med. Bull. 35: 45–101.Google Scholar
  112. Loewenstein, W. R., 1981, Junctional intercellular communication; the cell-to-cell membrane channel, Physiol. Rev. 61: 829–913.PubMedGoogle Scholar
  113. Mackenzie, L. W., and Garfield, R. E., 1985, Hormonal control of gap junctions in the myometrium, Am. J. Physiol. 248: C296–302.PubMedGoogle Scholar
  114. Mackenzie, L. W., and Garfield, R. E., 1986a, Effects of estradiol-17(3 and prostaglandins on myometrial gap junctions and pregnancy in the rat, Can. J. Physiol. Pharmacol. 64: 462–470.PubMedGoogle Scholar
  115. Mackenzie, L. W., and Garfield, R. E., 1986b, Effects of tamoxifen citrate and cycloheximide on estradiol induction of rat myometrial gap junctions, Can. J. Physiol. Pharmacol. 64: 703–711.PubMedGoogle Scholar
  116. Mackenzie, L. W., Puri, C. P., and Garfield, R. E., 1983, Effect of estradiol-170 and prostaglandins on rat myometrial gap junctions, Prostaglandins 26: 925–931.PubMedGoogle Scholar
  117. Makowski, L., 1985, Structural domains in gap junctions: Implications for the control of intercellular communication, in: Gap Junctions ( M. V. L. Bennett and D. C. Spray, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 5–12.Google Scholar
  118. Makowski, L., Caspar, D. L. D., Phillips, W. C., and Goodenough, D. A., 1984, Gap junction structures. V. Structural chemistry inferred from x-ray diffraction measurements on sucrose accessibility and trypsin susceptibility, J. Mol. Biol. 174: 449–481.PubMedGoogle Scholar
  119. Marshall, J. M., 1962, Regulation of activity of uterine smooth muscle, Physiol. Rev. 42: 213–235.Google Scholar
  120. Marston, S. B., and Lehman, W., 1985, Caldesmon is a Ca+ +-regulatory protein of native smooth muscle filaments, Biochem. J. 231: 517–522.Google Scholar
  121. Marston, S. B., and Smith, C. W. J., 1984, Purification and properties of Ca+ +-regulated thin filaments and F-actin from sheep aorta smooth muscle, J. Muscle Res. Cell Motil. 5: 559–575.PubMedGoogle Scholar
  122. Marston, S. B., and Smith, C. W. J., 1985, The thin filaments of smooth muscle, J. Muscle Res. Cell Motil. 6: 669–708.Google Scholar
  123. Merk, F. B., Kwan, P. W. L., and Leav, I., 1980, Gap junctions in the myometrium of hypophysectomized estrogen-treated rats, Cell Biol. Int. Rep. 4: 287–294.Google Scholar
  124. Murphy, R. A., 1979, Filament organization and contractile function in vertebrate smooth muscle, Annu. Rev. Physiol. 41: 737–748.PubMedGoogle Scholar
  125. Murphy, R. A., Driska, S. P., and Cohen, D. M., 1977, Variation in actin to myosin ratios and cellular force generation in vertebrate smooth muscles, in: Excitation-Contraction Coupling in Smooth Muscles (R. Casteels, J. Godfraind, and J. C. Ruegg, eds. ), Elsevier/North Holland Amsterdam, pp. 417–424.Google Scholar
  126. Needham, D. M., and Schoenberg, C. F., 1967, The biochemistry of the myometrium, in: Cellular Biology of the Uterus ( R. M. Wynn, ed.), Appleton-Century-Crofts, New York, pp. 291–352.Google Scholar
  127. Nonomura, J., 1976, Fine structure of myofilaments in chicken gizzard smooth muscle, in: Recent Progress in Electron Microscopy of Cells and Tissues ( E. Yamada, V. Mazuhira, K. Kurosumi, and T. Nagano, eds.), Georg Thieme, Stuttgart, pp. 40–48.Google Scholar
  128. Novikoff, A. P., and Novikoff, P. M., 1977, Cytochemical contributions to differentiating GERL from the Golgi apparatus, Histochem. J. 9: 525–537.Google Scholar
  129. Pease, D. C., and Molinari, S., 1960, Electron microscopy of muscular arteries; pial vessels of the cat and monkey, J. Ultrastruct. Res. 3: 447–468.Google Scholar
  130. Peracchia, C., 1980, Structural correlates of gap junction permeation, Int. Rev. Cytol. 66: 81–146.PubMedGoogle Scholar
  131. Popescu, L. M., and Diculescu, I., 1975, Calcium in smooth muscle sarcoplasmic reticulum in situ. Conventional and x-ray analytic electron microscopy, J. Cell Biol. 67: 911–918.Google Scholar
  132. Porter, D. G., Downing, S. J., and Bradshaw, J. M., 1979, Relaxin inhibits spontaneous and prostaglandin-driven myometrial activity in anaesthetized rats, J. Endocrinol. 83: 183–189.PubMedGoogle Scholar
  133. Puri, C. P., and Garfield, R. E., 1982, Changes in hormone levels and functional changes in the rat uterus during pregnancy and parturition, Biol. Reprod. 27: 967–978.PubMedGoogle Scholar
  134. Revel, J. -P., and Karnovsky, M. J., 1967, Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33: C7.PubMedGoogle Scholar
  135. Rice, R. V., Moses, J. A., McManus, G. M., Brady, A. C., and Blasik, L. M., 1970, The organization of contractile filaments in mammalian smooth muscle, J. Cell Biol. 47: 183–196.PubMedGoogle Scholar
  136. Ross, R., and Klebanoff, S. J., 1967, Fine structural changes in uterine smooth muscle and fibroblasts in response to estrogen, J. Cell Biol. 32: 155–167.PubMedGoogle Scholar
  137. Saito, Y., Sakamoto, H., MacKuskey, N. J., and Naftolin, F., 1985, Gap junctions and myometrial steroid hormone receptors in pregnant and post-partum rats: A possible cellular basis for the progesterone withdrawal hypothesis, Am. J. Obstet. Gynecol. 151: 809–821.Google Scholar
  138. Schollenmeyer, J. E., Furcht, L. T., Goll, D. E., Robson, R. M., and Stromer, M. H., 1976, localization of contractile proteins in smooth muscle cells and in normal and transformed fibroblasts, in: Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 361–368.Google Scholar
  139. Shoenberg, C. F., 1973, The influence of temperature on thick filaments of vertebrate smooth muscle, Phil. Trans. R. Soc. Lond. [Biol.] 265: 197–202.Google Scholar
  140. Shoenberg, C. F., 1978, The contractile mechanism and ultrastructure of the myometrium, in: Cellular Biology of the Uterus (R. M. Wynn, ed. ), pp. 497–544.Google Scholar
  141. Shoenberg, C. F., and Needham, D. M., 1976, A study of the mechanism of contraction in vertebrate smooth muscle, Biol. Rev. 51: 53–104.PubMedGoogle Scholar
  142. Shoenberg, C. F., and Stewart, M., 1980, Filament formation in smooth muscle homogenates, J. Muscle Res. Cell Motil. 1: 117–127.Google Scholar
  143. Sims, S. M., Garfield, R. E., and Daniel, E. E., 1982, Improved electrical coupling in uterine smooth muscle is associated with increased numbers of gap junctions at parturition, J. Gen. Physiol. 80: 353–375.PubMedGoogle Scholar
  144. Sloane, B. F., 1980, Lysosomal apparatus in uterine muscle: Effects of estrogen and ovariectomy, Biol. Reprod. 23: 867–876.PubMedGoogle Scholar
  145. Small, J. V., 1974, Contractile units in vertebrate smooth muscle, Nature 249: 324–327.PubMedGoogle Scholar
  146. Small, J. V., 1977, Studies on isolated smooth muscle cells: The contractile apparatus, J. Cell Sci. 24: 327–349.PubMedGoogle Scholar
  147. Small, J. V., and Sobieszek, A., 1980, The contractile apparatus of smooth muscle, Int. Rev. Cytol. 64: 241–306.Google Scholar
  148. Small, J. V., and Squire, J. M., 1972, Structural basis of contraction in vertebrate smooth muscle, J. Mol. Biol. 67: 117–149.PubMedGoogle Scholar
  149. Small, J. V., Furst, D. O., and Mey, J. D., 1986, Localization of filamin in smooth muscle, J. Cell Biol. 102: 210–220.PubMedGoogle Scholar
  150. Sobieszek, A., 1972, Cross-bridges on self-assembled smooth muscle myosin, Cold Spring Harbor Symp. Quant. Biol. 37: 109–112.Google Scholar
  151. Sobieszek, A., and Small, J. V., 1973, The assembly of ribbon-shaped structures in low ionic strength extracts obtained from vertebrate smooth muscle, Phil. Trans. R. Soc. Lond. [Biol.] 265: 203–212.Google Scholar
  152. Somlyo, A. P., 1984, Cellular site of calcium regulation, Nature 309: 516–517.PubMedGoogle Scholar
  153. Somlyo, A. P., 1985, Excitation-contraction coupling and the ultrastructure of smooth muscle, Circ. Res. 57: 497–507.PubMedGoogle Scholar
  154. Somlyo, A. P., Devine, C. E., Somlyo, A. V., and North, S. R., 1971, Sarcoplasmic reticulum and the temperature-dependent contraction of smooth muscle in calcium-free solution, J. Cell Biol. 51: 722–741.PubMedGoogle Scholar
  155. Somlyo, A. P., Devine, C. E., Somlyo, A. V., and Rice, R. V., 1973, Filament organization in vertebrate smooth muscle, Phil. Trans. R. Soc. Lond. [Biol.] 265: 223–229.Google Scholar
  156. Somlyo, A. P., Somlyo, A. V., Devine, C. E., Peters, D. E., and Hall, T. A., 1974, Electron microscopy and electron probe analysis of mitochondrial cation accumulation in smooth muscle, J. Cell Biol. 61: 723–742.PubMedGoogle Scholar
  157. Somlyo, A. P., Garfield, R. E., Chacko, S., and Somlyo, A. V., 1975, Golgi organelle response to the antibotic X537A, J. Cell Biol. 66: 425–443.PubMedGoogle Scholar
  158. Somlyo, A. P., Vallieres, I., Garfield, R. E., Shuman, H., Scarpa A., and Somlyo, A. V., 1977, Calcium compartmentalization in vascular smooth muscle: Electron microprobe analysis and studies on isolated mitochondria, in Biochemistry of Smooth Muscle ( N. L. Stephens, ed.), University Park Press, Baltimore, pp. 563–583.Google Scholar
  159. Somlyo, A. P., Somlyo, A. V., Shuman, H., Sloane, B. F., and Scarpa, A., 1978, Electron probe analysis of calcium compartments in cryosections of smooth and striated muscles, Ann. N. Y. Acad. Sci. 307: 523–544.Google Scholar
  160. Somlyo, A. P., Somlyo, A. V., and Shuman, H., 1979, Electron probe analysis of vascular smooth muscle: Composition of mitochondria, nuclei and cytoplasm, J. Cell Biol. 81: 316–335.Google Scholar
  161. Somlyo, A. P., Somlyo, A. V., Shuman, H., and Endo, M., 1982, Calcium and monovalent ions in smooth muscle, Fed. Proc. 41: 2883–2890.Google Scholar
  162. Somlyo, A. V., 1979, Bridging structures spanning the junctional gap at the triad of striated muscle, J. Cell Biol. 80: 743–750.PubMedGoogle Scholar
  163. Somlyo, A. V., 1980, Ultrastructure of smooth muscle, in: Handbook of Physiology, Section 2, The Cardiovascular System, Vol. II, Vascular Smooth Muscle ( D. F. Bohr, A. P. Somlyo, andH. V. Sparks, eds.), American Physiological Society, Bethesda, MD, pp. 33–68.Google Scholar
  164. Somlyo, A. V., and Franzini-Armstrong, C., 1985, New views of smooth muscle structure using freezing, deep-etching and rotary shadowing, Experientia 41: 841–856.PubMedGoogle Scholar
  165. Somlyo, A. V., and Somlyo, A. P., 1971, Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle, Science 174: 955–958.PubMedGoogle Scholar
  166. Somlyo, A. V., and Somlyo, A. P., 1975, Ultrastructure of smooth muscle, in: Methods of Pharmacology, Vol. 3 ( E. E. Daniel and D. M. Paton, eds.), Plenum Press, New York, pp. 3–45.Google Scholar
  167. Somlyo, A. V., Vinall, P., and Somlyo, A. P., 1969, Excitation-contraction coupling and electrical events in two types of vascular muscle, Microvasc. Res. 1: 354–373.Google Scholar
  168. Somlyo, A. V., Butler, T. M., Bond, M., and Somlyo, A. P., 1981, Myosin filaments have non-phosphorylated light chains in relaxed smooth muscle, Nature 294: 567–570.PubMedGoogle Scholar
  169. Somner, J. R., and Johnson, E. A., 1980, Ultrastructure of cardiac muscle, in: Handbook of Physiology, The Cardiovascular System, Vol. 1 ( R. M. Berne and N. Sperelakis, eds.), American Physiological Society, Washington, pp. 113–186.Google Scholar
  170. Sporrong, B., Aim, P., Owman, C., Sjoberg, N. O., and Thorbert, G., 1978, Ultrastructural evidence for adrenergic nerve degeneration in the guinea pig uterus during pregnancy, Cell Tissue Res. 195: 189–193.PubMedGoogle Scholar
  171. Spray, D. C., and Bennett, M. V. L., 1985, Physiology and pharmacology of gap junctions, Annu. Rev. Physiol. 47: 281–299.PubMedGoogle Scholar
  172. Spray, D. C., White, R. L., Campos, de Carvalho, A., Harris, A. L., and Bennett, M. V. L., 1984, Gating of gap junctional channels, Biophys. J. 45: 219–226.Google Scholar
  173. Steinert, P. M., Jones, J. C. R., and Goldman, R. D., 1984, Intermediate filaments, J. Cell Biol. 99: 22s - 27s.PubMedGoogle Scholar
  174. Thorbert, G., 1979, Regional changes in structure and function of adrenergic nerves in guinea pig uterus during pregnancy, Acta Obstet. Gynecol. Scand. [Suppl.] 79: 5–39.Google Scholar
  175. Thorburn, G. D., and Challis, J. R. G., 1979, Endocrine control of parturition, Physiol. Rev. 59: 863–907.PubMedGoogle Scholar
  176. Tomita, T., 1975, Electrical properties of mammalian smooth muscle, Prog. Biophys. Mol. Biol. 30: 185–203.PubMedGoogle Scholar
  177. Unwin, P. N. T., and Zampighi, G., 1980, Structure of the junction between communicating cells, Nature 283: 545–546.PubMedGoogle Scholar
  178. Vallieres, J., Scarpa, A., and Somlyo, A. P., 1975, Subcellular fractions of smooth muscle; isolation, substrate utilization and Ca+ + transport by main pulmonary artery and mesenteric vein mitochondria, Arch. Biochem. Biophys. 170: 659–669.Google Scholar
  179. Verhoeff, A., and Garfield, R. E., 1986, Ultrastructure of the myometrium and the role of gap junctions in myometrial function, in: The Physiology and Biochemistry of the Uterus in Pregnancy and Labor ( G. Huszar, ed.), CRC Press, Boca Raton, FL, pp. 73–91.Google Scholar
  180. Verity, M. A., and Be van, J. A., 1966, A morphopharmacological study of vascular muscle innervation, Bibl. Anat. 8: 60–65.Google Scholar
  181. Vibert, P. J., Haselgrove, J. C., Lowy, J., and Poulsen, F. R., 1972, Structural changes in actin containing filaments of muscle, J. Mol. Biol. 71: 757–767.PubMedGoogle Scholar
  182. Warshaw, D. M., McBride, W. J., and Work, S. S., 1987, Corkscrew-like shortening in single smooth muscle cells, Science 321: 1457–1459.Google Scholar
  183. Wathes, D. C., and Porter, D. G., 1982, Effect of uterine distension and estrogen treatment on gap junction formation in the myometrium of the rat, J. Reprod. Fertil. 65: 497–505.PubMedGoogle Scholar
  184. Wikland, M., Lindblom, B., Dahlstrom, A., and Haglid, K. G., 1984, Structural and functional evidence for the denervation of human myometrium during pregnancy, Obstet. Gynecol. 64: 503–509.PubMedGoogle Scholar
  185. Wikstrom, M., Akonen, P., and Tuukkainen, T., 1975, The role of mitochondria in uterine contractions, FEBS Lett. 56: 77–88.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • W. C. Cole
    • 1
  • R. E. Garfield
    • 2
    • 3
  1. 1.Division of Cardiovascular Sciences, St. Boniface Research Institute, Department of PhysiologyUniversity of ManitobaWinnipegCanada
  2. 2.Department of NeurosciencesMcMaster University, Health SciencesHamiltonCanada
  3. 3.Department of Obstetrics and GynecologyMcMaster University, Health SciencesHamiltonCanada

Personalised recommendations