Advertisement

Biochemistry of the Myometrium and Cervix

  • Gabor Huszar
  • Michael P. Walsh

Abstract

The uterus comprises the corpus (endometrium and myometrium) and the cervix. Although the functions of each are important, the events related to myometrial contractility, because they are the most visible, have received the most attention. Our understanding of smooth muscle contractility has advanced a great deal in the past decade. Most important in this respect has been the recognition that the interaction of actin and myosin is regulated by myosin light chain phosphorylation in contrast to skeletal muscles in which regulation occurs through troponin/tropomyosin associated with the actin filament. In the case of the myometrium, regulation is more complex, because the cellular events of myometrial contractility are modulated by the endocrine events of the menstrual cycle and gestation. Another key development in the understanding of uterine function was the recognition that myometrium and cervix are functionally interrelated and act in concert to bring about the cervical and myometrial events of labor (Huszar, 1979, 1980, 1983, 1986; Huszar et al, 1986).

Keywords

Vasoactive Intestinal Peptide Myosin Light Chain Myosin Light Chain Kinase Smooth Muscle Myosin Cervical Maturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelstein, R. S., Conti, M. A., Hathaway, D. R., and Klee, C. B., 1978, Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3’:5’-monophosphate-dependent protein kinase, J. Biol. Chem. 253: 8347.PubMedGoogle Scholar
  2. Aksoy, M. O., Murphy, R. A., and Kamm, K. E., 1982, Role of Ca2+ and myosin light chain phosphorylation in regulation of smooth muscle, Am. J. Physiol. 242: C109.PubMedGoogle Scholar
  3. Aksoy, M. O., Mras, S., Kamm, K. E., and Murphy, R. A., 1983, Ca2+, cAMP, and changes in myosin phosphorylation during contraction of smooth muscle, Am. J. Physiol. 245: C255.PubMedGoogle Scholar
  4. Alexandrova, M., and Soloff, M. S., 1980, Oxytocin receptors and parturition. I. Control of oxytocin receptor concentration in the rat myometrium at term, Endocrinology 106: 730.PubMedGoogle Scholar
  5. Altura, J. M., and Altura, B. T., 1981, Magnesium modulates calcium entry and contractility in vascular smooth muscle, in: The Mechanism of Gated Calcium Transport Across Biological Membrane ( F. Ohnishi and M. Endo, eds.), Academic Press, New York, p. 137.Google Scholar
  6. Anderson, G., Kawarabayashi, T., and Marshall, J. M., 1981, Effect of indomethacin and aspirin on uterine activity in pregnant rats: Comparison of circular and longitudinal muscle, Biol. Reprod. 24: 359.PubMedGoogle Scholar
  7. Armstrong, D., and Eckert, R., 1987, Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization, Proc. Natl. Acad. Sci. U. S. A. 84: 2518.PubMedGoogle Scholar
  8. Bagby, R. M., 1983, Organization of contractility/cytoskeletal elements, in: Biochemistry of Smooth Muscle, Vol. I ( N. L. Stephens, ed.), CRC Press, Boca Raton, FL, pp. 1–85.Google Scholar
  9. Baker, P. F., 1975, Calcium Movement in Excitable Cells, Pergamon Press, Oxford, pp. 9–53.Google Scholar
  10. Batra, S., 1982, Uptake and energy-dependent extrusion of calcium in the rat uterus, Acta Physiol. Scand. 114: 447.PubMedGoogle Scholar
  11. Bengtsson, B., Chow, E. M., and Marshall, J. M., 1984a, Activity of circular muscle of rat uterus at different times in pregnancy, Am. J. Physiol. 246: C216.PubMedGoogle Scholar
  12. Bengtsson, B., Chow, E. M., and Marshall, J. M., 1984b, Calcium dependency of pregnant rat myometrium: Comparison of circular and longitudinal muscle, Biol. Reprod. 30: 869.PubMedGoogle Scholar
  13. Berg, G., Andersson, R. G., and Ryden, G., 1983, In vitro study of phosphodiesterase-inhibiting drugs: A complement to (1-sympathomimetic drug therapy in premature labor, Am. J. Obstet. Gynecol. 145: 802.Google Scholar
  14. Berg, G., Andersson, R. G. G., and Ryden, G., 1985, p-Adrenergic receptors in human myometrium during pregnancy: Changes in the number of receptors after (3-mimetic treatment, Am. J. Obstet. Gynecol. 151: 392.Google Scholar
  15. Berg, G., Andersson, R. G. G., and Ryden, G., 1986, a-Adrenergic receptors in human myometrium during pregnancy, Am. J. Obstet. Gynecol. 154: 601.Google Scholar
  16. Bernstein, P., Leyland, N., Gurland, P., and Gare, D., 1987, Cervical ripening and labor induction with prostaglandin E2 gel: A placebo-controlled study, Am. J. Obstet. Gynecol. 156: 336.Google Scholar
  17. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312: 315.PubMedGoogle Scholar
  18. Bird, L. M., Anderson, N. C., Chandler, M. L., and Young, R. C., 1987, The effects of aminophylline and nifedipine on contractility of isolated pregnant human myometrium, Am. J. Obstet. Gynecol. 157: 171.PubMedGoogle Scholar
  19. Bitar, K. N., Bradford, P., Putney, J. W., Jr., and Makhlouf, G. M., 1986a, Cytosolic calcium during contraction of isolated mammalian gastric muscle cells, Science 232: 1143.PubMedGoogle Scholar
  20. Bitar, K. N., Bradford, P. G., Putney, J. W., Jr., and Makhlouf, G. M., 1986b, Stoichiometry of contraction and Ca2+ mobilization by inositol 1, 4, 5-trisphosphate in isolated gastric smooth muscle cells, J. Biol. Chem. 261: 16591.Google Scholar
  21. Blumentalh, D. K., Takio, K., Edelman, A. M., Charbonneau, H., Titani, K., Walsh, K. A., and Krebs, E. G., 1985, Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase, Proc. Natl. Acad. Sci. U. S. A. 82: 3187.Google Scholar
  22. Bolger, G. T., Gengo, P. J., Luchowski, E. M., Siegel, H., Triggle, D. J., and Janis, R. A., 1982, High affinity binding of a calcium channel antagonist to smooth and cardiac muscle, Biochem. Biophys. Res. Commun. 104: 1604.Google Scholar
  23. Bond, M., and Somlyo, A. V., 1982, Dense bodies and actin polarity in vertebrate smooth muscle, J. Cell Biol. 95: 403.PubMedGoogle Scholar
  24. Bretscher, A., 1984, Smooth muscle caldesmon. Rapid purification and F-actin cross-linking properties, J. Biol. Chem. 259: 12873.Google Scholar
  25. Brum, G., Osterreider, W., and Trautwein, W., 1984, 0-Adrenergic increase in the calcium conductance of cardiac myocytes studied with the patch clamp, Pflugers Arch. 401: 111.Google Scholar
  26. Bryman, I., Sahni, S., Norstrom, A., and Lindblom, B., 1984, Influence of prostaglandins on contractility of isolated human cervical muscle, J. Obstet. Gynecol. 63: 280.Google Scholar
  27. Bryman, I., Norstrom, A., and Lindblom, B., 1986, Influence of prostaglandins and adrenoceptor agonists on contractile activity in the human cervix at term, Obstet. Gynecol. 67: 574.Google Scholar
  28. Bygdeman, M., 1980, Clinical applications, in: Advances in Prostaglandin and Thromboxane Research, Vol. 6 ( B. Samuelsson, P. W. Ramwell, and R. Paoletti, eds.), Raven Press, New York, p. 87.Google Scholar
  29. Cabrol, D., Breton, M., Berrou, E., Vissier, A., Sureau, C., and Picard, J., 1980, Variation in the distribution of glycosaminoglycans in the uterine cervix of pregnant women, Eur. J. Obstet. Gynecol. Reprod. Biol. 10: 281.Google Scholar
  30. Cabrol, D., Huszar, G., Romero, R., and Naftolin, F., 1981, Gestational changes in the rat uterine cervix: Protein, collagen and glycosaminoglycan content, in: The Cervix in Pregnancy and Labour: Clinical and Biochemical Investigations ( D. A. Ellwood and A. B. M. Anderson, eds.), Churchill Livingstone, Edinburgh, p. 34.Google Scholar
  31. Cabrol, D., Bouvier, anYvoire, M., 1985, Induction of labor with mifepristone after intrauterine fetal death [letter], Lancet 2: 1019.Google Scholar
  32. Calder, A. A., 1980, Pharmacological management of the unripe cervix in the human, in: Dilatation of the Uterine Cervix: Connective Tissue Biology and Clinical Management ( F. Naftolin and P. G. Stubblefield, eds.), Raven Press, New York, p. 317.Google Scholar
  33. Carsten, M. E., 1974, Hormonal regulation of myometrial calcium transport, Gynecol. Invest. 5: 269.Google Scholar
  34. Casey, M. L., Cutrer, S., and Mitchell, M. D., 1983, Origin of prostanoids in human amnionic fluid: Prostanoids, Am. J. Obstet. Gynecol. 147: 547dGoogle Scholar
  35. D’Yvoire, M., 1985, Induction of labor with mifepristone after intrauterine fetal death [letter], Lancet 2: 1019.Google Scholar
  36. Calder, A. A., 1980, Pharmacological management of the unripe cervix in the human, in: Dilatation of the Uterine Cervix: Connective Tissue Biology and Clinical Management ( F. Naftolin and P. G. Stubblefield, eds.), Raven Press, New York, p. 317.Google Scholar
  37. Carsten, M. E., 1974, Hormonal regulation of myometrial calcium transport, Gynecol. Invest. 5: 269.Google Scholar
  38. Casey, M. L., Cutrer, S., and Mitchell, M. D., 1983, Origin of prostanoids in human amnionic fluid: Prostanoids, Am. J. Obstet. Gynecol. 147: 547.PubMedGoogle Scholar
  39. Casper, R. F., and Lye, S. J., 1986, Myometrial desensitization to continuous but not to intermittent (3-adrenergic agonist infusion in the sheep, Am. J. Obstet. Gynecol. 154: 301.PubMedGoogle Scholar
  40. Casper, R. F., and Lye, S. J., 1987, p-Adrenergic receptor agonist infusion increases plasma prostaglandin F levels in pregnant sheep, Am. J. Obstet. Gynecol. 157: 998.PubMedGoogle Scholar
  41. Cassidy, P. S., Hoar, P. E., and Kerrick, W. G. L., 1979, Irreversible thiophosphorylation and activation of tension in functionally skinned rabbit ileum strips by [35S] ATP7S, J. Biol. Chem. 254: 11148.PubMedGoogle Scholar
  42. Cassidy, P., Hoar, P. E., and Kerrick, W. G., 1980, Inhibition of calcium-activated tension and myosin light chain phosphorylation in skinned smooth muscle strips by the phenothiazines, Pflugers Arch. 387: 115.PubMedGoogle Scholar
  43. Casteels, R., Wuytack, F., Himpens, B., and Raeymaekers, L., 1986, Regulatory systems for the cytoplasmic calcium concentration in smooth muscle, Biomed. Biochim. Acta 45: S147.Google Scholar
  44. Chacko, S., 1981, Effects of phosphorylation, calcium ion, and tropomyosin on actin-activated adenosintriphosphatase activity of mammalian smooth muscle myosin, Biochemistry 20: 702.PubMedGoogle Scholar
  45. Chacko, S., Conti, M. A., and Adelstein, R. S., 1977, Effect of phosphorylation of smooth muscle myosin on actin activation and Ca2+ regulation, Proc. Natl. Acad. Sci. U. S. A. 74: 129.PubMedGoogle Scholar
  46. Challis, J. R. G., and Olson D. M., 1988, Parturition, in: The Physiology of Reproduction ( E. Knobil, J. Neill, et al., eds.), Raven Press, New York, p. 2177.Google Scholar
  47. Chatterjee, M., and Murphy, R. A., 1983, Calcium-dependent stress maintenance without myosin phosphorylation in skinned smooth muscle, Science 221: 464.PubMedGoogle Scholar
  48. Chaturvedi, A. K., Landon, E. J., and Sastry, B. V., 1978, Influence of chlorpromazine on calcium movements and contractile responses of guinea pig ileum longitudinal smooth muscle to agonists, Arch. Int. Pharmacodyn. 236: 109.PubMedGoogle Scholar
  49. Clark, T., Ngai, P. K., Sutherland, C., Groschel-Stewart, U., and Walsh, M. P., 1986, Vascular smooth muscle caldesmon, J. Biol. Chem. 261: 8028e 5’triphosphatase activity of mammalian smooth muscle myosin, Biochemistry 20: 702.PubMedGoogle Scholar
  50. Chacko, S., Conti, M. A., and Adelstein, R. S., 1977, Effect of phosphorylation of smooth muscle myosin on actin activation and Ca2+ regulation, Proc. Natl. Acad. Sci. U. S. A. 74: 129.PubMedGoogle Scholar
  51. Challis, J. R. G., and Olson D. M., 1988, Parturition, in: The Physiology of Reproduction ( E. Knobil, J. Neill, et al., eds.), Raven Press, New York, p. 2177.Google Scholar
  52. Chatterjee, M., and Murphy, R. A., 1983, Calcium-dependent stress maintenance without myosin phosphorylation in skinned smooth muscle, Science 221: 464.PubMedGoogle Scholar
  53. Chaturvedi, A. K., Landon, E. J., and Sastry, B. V., 1978, Influence of chlorpromazine on calcium movements and contractile responses of guinea pig ileum longitudinal smooth muscle to agonists, Arch. Int. Pharmacodyn. 236: 109.PubMedGoogle Scholar
  54. Clark, T., Ngai, P. K., Sutherland, C., Groschel-Stewart, U., and Walsh, M. P., 1986, Vascular smooth muscle caldesmon, J. Biol. Chem. 261: 8028.PubMedGoogle Scholar
  55. Conrad, J., and Ueland, K., 1979, The stretch modulus of human cervical tissue in spontaneous, oxytocin-induced, and prostaglandin E2-induced labor, Am. J. Obstet. Gynecol. 133: 11.Google Scholar
  56. Conti, M. A., and Adelstein, R. S., 1981, The relationship between calmodulin binding and phosphorylation of smooth muscle myosin kinase by the catalytic subunit of 3’:5’ cAMP-dependent protein kinase, J. Biol. Chem. 256: 3178.PubMedGoogle Scholar
  57. Craig, R., Smith, R., and Kendrick-Jones, J., 1983, Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules, Nature 302: 436.PubMedGoogle Scholar
  58. Csabina, S., Mougios, V., Bárány, M., and Bárány, K., 1986, Characterization of the phosphorylatable myosin light chain in rat uterus, Biochim. Biophys. Acta 871: 311.Google Scholar
  59. Csapo, A. I., 1977, The “see-saw” theory of parturition, in: The Fetus and Birth, Ciba Foundation Symposium ( J. Knight and M. O’Connor, eds.), Elsevier, Amsterdam, p. 159.Google Scholar
  60. Csapo, A. I., and Herczeg, J., 1977, Arrest of premature labor by isoxsuprine, Am. J. Obstet. Gynecol. 129: 482.Google Scholar
  61. Csapo, A. I., Puri, C. P., Tarro, S., and Henzl, M. R., 1982, Deactivation of the uterus during normal and premature labor by the calcium antagonist nicardipine, Am. J. Obstet. Gynecol. 142: 483.PubMedGoogle Scholar
  62. Cummins, P., and Perry, S. V., 1974, Chemical and immunochemical characteristics of tropomyosins from striated and smooth muscle, Biochem. J. 141: 43.PubMedGoogle Scholar
  63. Curtis, B. M., and Catterall, W. A., 1986, Reconstitution of the voltage-sensitive calcium channel purified from skeletal muscle transverse tubules, Biochemistry 25: 3077.PubMedGoogle Scholar
  64. Dabrowska, R., Hinkins, S., Walsh, M. P., and Hartshorne, D. J., 1982, The binding of smooth muscle myosin light chain kinase to actin, Biochem. Biophys. Res. Commun. 107: 1524.PubMedGoogle Scholar
  65. Danforth, D. N., Buckingham, J. C., and Roddick, J. W., 1960, Connective tissue changes incident to cervical effacement, Am. J. Obstet. Gynecol. 80: 939.PubMedGoogle Scholar
  66. Dattel, B. J., Lam, F., and Roberts, J. M., 1986, Failure to demonstrate decreased (3-adrenergic receptor concentration or decreased agonist efficacy in term or preterm human parturition, Am. J. Obstet. Gynecol. 154: 450.PubMedGoogle Scholar
  67. Davidson, B. J., Murray, R. D., Challis, J. R. G., and Valenzuela, G. J., 1987, Estrogen, progesterone, prolactin, prostaglandin E2, prostaglandin F2a, 13, 14-dihydro-15-ketoprostaglandin F2a, and 6-keto-prostaglandin Fla gradients across the uterus in women in labor and not in labor, Am. J. Obstet. Gynecol. 157: 54.PubMedGoogle Scholar
  68. DeFeo, T. T., and Morgan, K. G., 1985, Calcium-force relationships as detected with aequorin in two different vascular smooth muscles of the ferret, J. Physiol. ( Lond. ) 369: 269.Google Scholar
  69. Den, K., Sakamoto, H., Kimura, S., and Takaji, S., 1981, Study of oxytocin receptor. II. Gestational changes in oxytocin activity in the human myometrium, Endocrinol. Jpn. 28: 375.Google Scholar
  70. Dillon, P. F., Aksoy, M. O., Driska, S. P., and Murphy, R. A., 1981, Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle, Science 211: 495.PubMedGoogle Scholar
  71. Droegemueller, W., Chvapil, M., Vining, J., Whitaker, L., and Christian, C. D., 1978, Urea and dilatation of the cervix, Am. J. Obstet. Gynecol. 132: 775.PubMedGoogle Scholar
  72. Ekman, G., Forman, A., Marsal, K., and Ulmsten, U., 1983, Intravaginal versus intracervical application of prostaglandin E2 in viscous gel for cervical priming and induction of labor at term in patients with an unfavorable cervical state, Am. J. Obstet. Gynecol. 147: 657.Google Scholar
  73. Endo, M., 1977, Calcium release from the sarcoplasmic reticulum, Physiol. Rev. 57: 71.PubMedGoogle Scholar
  74. Ezimokham, M., and Nwabinelli, J. N., 1980, The use of Foley’s catheter in ripening the unfavourable cervix prior to induction of labour, Br. J. Obstet. Gynaecol. 87: 281.Google Scholar
  75. Fatigati, V., and Murphy, R. A., 1984, Actin and tropomyosin variants in smooth muscles. Dependence on tissue type, J. Biol. Chem. 259: 14383.PubMedGoogle Scholar
  76. Filo, R. S., Bohr, D. F., and Ruegg, J. C., 1965, Glycerinated skeletal and smooth muscle: Calcium and magnesium dependence, Science 147: 1581.PubMedGoogle Scholar
  77. Fitzpatrick, R. J., 1977, Changes in cervical function at parturition, Ann. Rech. Vet. 8: 438.PubMedGoogle Scholar
  78. Fliegel, L., Ohnishi, M., Carpenter, M. R., Khanna, V. K., Reithmeier, R. A. F., and MacLennan, D. H., 1987, Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing, Proc. Natl. Acad. Sci. U. S. A. 84: 1167.PubMedGoogle Scholar
  79. Flower, R. J., 1986, The mediators of steroid action, Nature 320: 20.PubMedGoogle Scholar
  80. Forman, A., Gandrup, P., Andersson, K. -E., and Ulmsten, U., 1982a, Effects of nifedipine on spontaneous and methylergometrine-induced activity postpartum, Am. J. Obstet. Gynecol. 144: 442.Google Scholar
  81. Forman, A., Ulmsten, U., Banyai, J., Wingerup, L., and Uldbjerg, N., 1982b, Evidence for a local effect of intracervical prostaglandin E2-gel, Am. J. Obstet. Gynecol. 143: 756.Google Scholar
  82. Foster, C., Van Fleet, M., and Marshak, A., 1986, Tryptic digestion of myosin light chain kinase produces an inactive fragment that is activated on continued digestion, Arch. Biochem. Biophys. 251: 616.Google Scholar
  83. Foyt, H. L., Guerriero, V., Jr., and Means, A. R., 1985, Functional domains of chicken gizzard myosin light chain kinase, J. Biol. Chem. 260: 7765.PubMedGoogle Scholar
  84. Frydman R., Taylor, S., Fernandez, H., Pons, J. C., Forman, R. G., and Ulmann, A., 1986, Obstetrical indication of mifepristone (RU 486) [Abstract]. Presented at the sixth annual meeting of the Society for Advances in Contraception, Chicago, Society for the Advances in Contraception.Google Scholar
  85. Fuchs, A. R., 1986, The role of oxytocin in parturition, in: The Physiology and Biochemistry of the Uterus (G. Huszar, ed.), CRC Press, Boca Raton, FL, pp. 163–184.Google Scholar
  86. Fuchs, A. R., Fuchs, F., and Husslein, P., 1982, Oxytocin receptors and human parturition: A dual role for oxytocin in the initiation of labor, Science 215: 1396.Google Scholar
  87. Fukunaga, K., Yamamoto, H., Matsui, K., Higashi, K., and Miyamoto, E., 1982, Purification and characterization of a Ca2+ and calmodulin-dependent protein kinase from rat brain, J. Neurochem. 39: 1607.PubMedGoogle Scholar
  88. Furukawa, K. -I., and Nakamura, H., 1984, Characterization of the (Ca2+ + Mg2+)-Atpase purified by calmodulin-affinity chromatography from bovine aortic smooth muscle, J. Biochem. ( Tokyo ) 96: 1343.Google Scholar
  89. Galizzi, J. -P., Qar, J., Fosset, M., Van Renterghem, C., and Lazdunski, M., 1987, Regulation of calcium channels in aortic muscle cells by protein kinase C activators (diacylglycerol and phorbol esters) and by peptides (vasopressin and bombesin) that stimulate phosphoinositide breakdown, J. Biol. Chem. 262: 6947.Google Scholar
  90. Gallis, B., Edelman, A. M., Casnellie, J. E., and Krebs, E. G., 1983, Epidermal growth factor stimulates tyrosine phosphorylation of the myosin regulatory light chain from smooth muscle, J. Biol. Chem. 258: 13089.PubMedGoogle Scholar
  91. Gammisans, O., 1984, The effects of prostaglandin synthesis inhibitors on preterm labor, in: Preterm Birth: Cases, Prevention, Management ( F. Fuchs and P. Stubblefield, eds.), Macmillan, New York, p. 223.Google Scholar
  92. Garfield, R. E., Kannan, M. S., and Daniel, E. E., 1980, Gap junction formation in myometrium: Control by estrogens, progesterone and prostaglandins, Am. J. Physiol. 238: C81.PubMedGoogle Scholar
  93. Garfield, R. E., Puri, C. P., and Csapo, A. I., 1982, Endocrine, structural, and functional changes in the uterus during premature labor, Am. J. Obstet. Gynecol. 142: 21.PubMedGoogle Scholar
  94. Garfield, R. E., Gasc, J. M., and Baulieu, E. E., 1987, Effects of antiprogesterone RU 486 on preterm birth in the rat, Am. J. Obstet. Gynecol. 157: 1281.PubMedGoogle Scholar
  95. Giannopoulis, G., Jackson, K., Kredentser, J., and Tulchinsky, D., 1985, Prostaglandin E2 and F2a receptors in human myometrium during the menstrual cycle and in pregnancy and labor, Am. J. Obstet. Gynecol. 153: 904.Google Scholar
  96. Gold, J., Schulz, K. F., and Cates, W., Jr., 1980, The safety of laminaria and rigid dilator for cervical dilation prior to suction curettage for first trimester abortion: A comparative analysis, in: Dilatation of the Uterine Cervix, Connective Tissue Biology and Clinical Management ( F. Naftolin and P. G. Stubblefield, eds.), Raven Press, New York, p. 363.Google Scholar
  97. Golichowski, A. M., King, S. R., and Mascaro, K., 1980, Pregnancy-related changes in rat cervical glycosaminoglycans, Biochem. J. 192: 1.Google Scholar
  98. Grover, A. K., Kwan, C. Y., Luchowski, E., Daniel, E. E., and Triggle, D. J., 1984, Subcellular distribution of [3H]nitrendipine binding in smooth muscle, J. Biol. Chem. 4: 2223.Google Scholar
  99. Grynkiewicz, G., Poenie, M., and Tsien, R. Y., 1985, A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem. 260: 3440.PubMedGoogle Scholar
  100. Guerriero, V., Jr., Russo, M. A., Olson, N. J., Putkey, J. A., and Means, A. R., 1986, Domain organization of chicken gizzard myosin light chain kinase deduced from a cloned DNA, Biochemistry 25: 8372.PubMedGoogle Scholar
  101. Haeberle, J. R., and Trockman, B. A., 1986, Two-site phosphorylation of the 20, 000 dalton myosin light chain of glycerinated porcine carotid artery smooth muscle, Biophys. J. 49: 389a.Google Scholar
  102. Haeberle, J. R., Hathaway, D. R., and DePaoli-Roach, A. A., 1985, Dephosphorylation of myosin by the catalytic subunit of a type-2 phosphatase produces relaxation of chemically skinned uterine smooth muscle, J. Biol. Chem. 260: 9965.PubMedGoogle Scholar
  103. Hahn, D. W., Demarest, K. T., Ericson, E., Homm, R. E., Capetola, R. J., and McGuire, J. L., 1987, Evaluation of l-deamino-[D-Tyr(0 ethyl)2, Thr4, Orn8]vasotocin, an oxytocin antagonist, in animal models of uterine contractility and preterm labor: A new tocolytic agent, Am. J. Obstet. Gynecol. 157: 977.PubMedGoogle Scholar
  104. Hai, C. -M., and Murphy, R. A., 1988, Cross-bridge phosphorylation and regulation of latch state in smooth muscle, Am. J. Physiol. 254: C99.PubMedGoogle Scholar
  105. Haluska, G. J., Stanczyk, F. Z., Cook, M. J., and Novy, M. J., 1987, Temporal changes in uterine activity and prostaglandin response to RU 486 in rhesus macaques in late gestation, Am. J. Obstet. Gynecol. 157: 1487.PubMedGoogle Scholar
  106. Hammer, J. A. III, Sellers, J. R., and Korn, E. D., 1984, Phosphorylation and activation of smooth muscle myosin by Acanthamoeba myosin I heavy chain kinase, J. Biol. Chem. 259: 3224.PubMedGoogle Scholar
  107. Hanssens, M. C., Selby, C., Filshie, G. M., Gilbert, B. J., and Symonds, E. M., 1983, Changes in plasma steroid hormones during treatment of preterm labour with ritodrine-HCl, Br. J. Obstet. Gynaecol. 90: 847.PubMedGoogle Scholar
  108. Harris, B., Jr., Huddleston, J. F., Sutliff, G., and Perlis, H. W., 1983, The unfavorable cervix in prolonged pregnancy, J. Obstet. Gynecol. 62: 171.Google Scholar
  109. Hartshorne, D. J., 1987, Biochemistry of the contractile process in smooth muscle, in: Physiology of the Gastrointestinal Tract, second edition ( L. R. Johnson, ed.), Raven Press, New York, pp. 423–482.Google Scholar
  110. Hashimoto, T., Hirata, M., Itoh, T., Kanmura, Y., and Kuriyama, H., 1986, Inositol 1, 4, 5-trisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery, J. Physiol. ( Lond. ) 370: 605.Google Scholar
  111. Hidaka, H., Asano, M., Iwadare, S., Matsumoto, I., Totsuka, T., and Aoki, M., 1978, A novel vascular relaxing agent, N-(aminohexyl)5-chloro-l-naphthalene-sulfonamide, which affects vascular smooth muscle actomyosin, J. Pharmacol. Exp. Ther. 207: 8.Google Scholar
  112. Hidaka, H., Yamaki, T., Naka, M., Tanaka, T., Hayashi, H., and Kobayashi, R., 1980, Calcium-regulated 394 modulator protein interacting agents inhibit smooth muscle calcium-stimulated protein kinase and Atpase, Mol. Pharmacol. 17: 66.Google Scholar
  113. Hidaka, H., Asano, M., and Tanaka, T., 1981, Activity-structure relationship of calmodulin antagonists. Naphthalenesulfonamide derivatives, Mol. Pharmacol. 20: 571.Google Scholar
  114. Higashi, K., Fukunaga, K., Matsui, K., Maeyama, M., and Miyamoto, E., 1983, Purification and characterization of myosin light-chain kinase from porcine myometrium and its phosphorylation and modulation by cyclic AMP-dependent protein kinase, Biochim. Biophys. Acta 747: 232.Google Scholar
  115. Hillier, K., and Wallis, R., 1981, Prostaglandins, steroids and the human cervix, in: The Cervix in Pregnancy and Labour: Clinical and Biochemical Investigations ( D. A. Ellwood, and A. M. Anderson, eds.), Churchill Livingstone, Edinburgh, p. 34.Google Scholar
  116. Hirata, M., Mikawa, T., Nonomura, Y., and Ebashi, S., 1977, Ca2+ regulation in vascular smooth muscle, J. Biochem. ( Tokyo ) 82: 1793.Google Scholar
  117. Hoar, P. E., Kerrick, W. G. L., and Cassidy, P. S., 1979, Chicken gizzard: Relation between calcium-activated phosphorylation and contraction, Science 204: 503.PubMedGoogle Scholar
  118. Hoar, P. E., Pato, M. D., and Kerrick, W. G. L., 1985, Myosin light chain phosphatase. Effect on the activation and relaxation of gizzard smooth muscle skinned fibers, J. Biol. Chem. 260: 8760.PubMedGoogle Scholar
  119. Hochman, J., Weiss, G., Steinetz, B. G., and O’Byrne, E. M., 1978, Serum relaxin concentrations in prostaglandin-and oxytocin-induced labor in women, Am. J. Obstet. Gynecol. 130: 473.PubMedGoogle Scholar
  120. Hokin, M. R., and Hokin, L. E., 1953, Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices, J. Biol. Chem. 203: 967.PubMedGoogle Scholar
  121. Holbrook, R. H., Jr., Lirette, M., and Katz, M., 1987, Cardiovascular and tocolytic effects of nicardipine HC1 in the pregnant rabbit: Comparison with ritodrine HC1, Obstet. Gynecol. 69: 83.Google Scholar
  122. Hollingsworth, M., Isherwood, C. N. M., and Roster, R. W., 1979, The effects of oestradiol benzoate, progesterone, relaxin and ovariectomy on cervical extensibility in the late pregnant rat, J. Reprod. Fertil. 56: 471.PubMedGoogle Scholar
  123. Holz, G. G., Rane, S. G., and Dunlap, K., 1986, GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels, Nature 319: 670.PubMedGoogle Scholar
  124. Houlton, M. C. C., Marivate, M., and Philpott, R. H., 1982, Factors associated with preterm labour and changes in the cervix before labour in twin pregnancy, Br. J. Obstet. Gynaecol. 89: 190.PubMedGoogle Scholar
  125. Hulka, J. F., and Chepko, M., 1987, Vaginal prostaglandin Ej analogue (ONO-802) to soften the cervix in first trimester abortion, Obstet. Gynecol. 69: 57.Google Scholar
  126. Hurwitz, L., 1986, Pharmacology of clacium channels and smooth muscle, Annu. Rev. Pharmacol. Toxicol. 26: 225.Google Scholar
  127. Husslein, P., Fuchs, A. R., and Fuchs, F., 1981, Oxytocin and the initiation of human parturition, I. Prostaglandin release during induction of labor by oxytocin, Am. J. Obstet. Gynecol. 141: 688.Google Scholar
  128. Huszar, G., 1979, Cellular aspects of labor, in: Proceedings 15th Mead Johnson Symposium on Premature Labor ( J. C. Sinclair, J. B. Warshaw, and R. S. Bloom, eds.), Mead Johnson and Company, Evansville, IN, p. 16.Google Scholar
  129. Huszar, G., 1980, The relationship between myometrial contractility and cervical ripening in parturition, in: Dilatation of the Uterine Cervix: Connective Tissue Biology and Clinical Management ( P. Stubblefield and F. Naftolin, eds.), Raven Press, New York, p. 371.Google Scholar
  130. Huszar, G., 1981, Biology and biochemistry of myometrial contractility and cervical maturation, Preterm Parturition, Semin. Perinatol. 5: 216.Google Scholar
  131. Huszar, G., 1983, Physiology of myometrial contractility and of cervical dilatation, in: Preterm Birth: Causes, Prevention and Management ( F. Fuchs and P. Stubblefield, eds.), Macmillan, New York, p. 21.Google Scholar
  132. Huszar, G., 1984, Method for Determining the Extensibility of Selected Non-Excised Tissue of the Uterine Cervix, Ear or Skin, U. S. Patent 4, 432, 376.Google Scholar
  133. Huszar, G., 1986, Cellular regulation of myometrial contractility and essentials of tocolytic therapy, in: The Physiology and Biochemistry of the Uterus ( G. Huszar, ed.), CRC Press, Boca Raton, FL, pp. 107–126.Google Scholar
  134. Huszar, G., and Bailey, P., 1979a, Relationship between actin-myosin interactions and myosin light-chain phosphorylation in human placental smooth muscle, Am. J. Obstet. Gynecol. 135: 718.Google Scholar
  135. Huszar, G., and Bailey, P., 1979b, Isolation and characterization of myosin in the human term placenta, Am. J. Obstet. Gynecol. 135: 707.Google Scholar
  136. Huszar, G., and Naftolin, F., 1984, Myometrium and cervix: The physiologic basis of labor and tocolytic management, N. Engl. J. Med. 311: 571.Google Scholar
  137. Huszar, G., and Roberts, J. R., 1982, Biochemistry and pharmacology of the myometrium and labor: Regulation at the cellular and molecular levels, Am. J. Obstet. Gynecol. 142: 225.PubMedGoogle Scholar
  138. Huszar, G., and Vigue, L., 1986, The structure of myosin heavy chain in various smooth muscles, Biophys. J. 49: 184a.Google Scholar
  139. Huszar, G., Cabrol, D., and Naftolin, F., 1986, The relationship between myometrial contractility and cervical maturation in pregnancy and labor, in: The Physiology and Biochemistry of the Uterus ( G. Huszar, ed.), CRC Press, Boca Raton, FL, pp. 201–223.Google Scholar
  140. Huxley, H. E., 1971, The structural basis of muscular contraction, Proc. R. Soc. Lond. [Biol.] 178: 131.Google Scholar
  141. Ikebe, M., and Hartshorne, D. J., 1984, Conformation-dependent proteolysis of smooth-muscle myosin, J. Biol. Chem. 259: 11639.PubMedGoogle Scholar
  142. Ikebe, M., and Hartshorne, D. J., 1985a, Proteolysis of smooth muscle myosin by Staphylococcus aureus protease: Preparation of heavy meromyosin and subfragment 1 with intact 20, 000-dalton light chains, Biochemistry 24: 2380.Google Scholar
  143. Ikebe, M., and Hartshorne, D. J., 1985b, Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase, J. Biol. Chem. 260: 10027.PubMedGoogle Scholar
  144. Ikebe, M., Ogihara, S., and Tonomura, Y., 1982, Nonlinear dependence of actin-activated Mg2+-Atpase activity on the extent of phosphorylation of gizzard myosin and H-meromyosin, J. Biochem. ( Tokyo ) 91: 1809.Google Scholar
  145. Ikebe, M., Hinkins, S., and Hartshorne, D. J., 1983, Correlation of enzymatic properties and conformation of smooth muscle myosin, Biochemistry 22: 4580.PubMedGoogle Scholar
  146. Ikebe, M., Hartshorne, D. J., and Elzinga, M., 1986, Identification, phosphorylation, and dephosphorylationof a second site for myosin light chain kinase on the 20, 000-dalton light chain of smooth muscle myosin, J. Biol. Chem. 261: 36.Google Scholar
  147. Ikebe, M., Hartshorne, D. J., and Elzinga, M., 1987a, Phosphorylation of the 20, 000-dalton light chain of smooth muscle myosin by the calcium-activated, phospholipid-dependent protein kinase. Phosphorylation sites and effects of phosphorylation, J. Biol. Chem. 262: 9569.Google Scholar
  148. Ikebe, M., Stepinska, M., Kemp, B. E., Means, A. R., and Hartshorne, D. J., 1987b, Proteolysis of smooth muscle myosin light chain kinase. Formation of inactive and calmodulin-independent fragments, J. Biol. Chem. 262: 13828.PubMedGoogle Scholar
  149. Irvine, R. F., and Moor, R. M., 1986, Micro-injection of inositol 1, 3, 4, 5-tetrakiphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+, Biochem. J. 240: 917.PubMedGoogle Scholar
  150. Ito, A., Naganeo, K., Mori, Y., Mirakawa, S., and Hayashi, M., 1977, PZ-peptidase activity in human uterine cervix in pregnancy at term, Clin. Chim. Acta 78: 267.Google Scholar
  151. Itoh, T., Ueno, H., and Kuriyama, H., 1985, Calcium-induced calcium release mechanism in vascular smooth muscles-assessments based on contractions evoked in intact and saponin-treated skinned muscles, Experientia 41: 989.PubMedGoogle Scholar
  152. Janis, R. A., Bárány, K., Bárány, M., and Sarmiento, J. G., 1981, Association between myosin light chain phosphorylation and contraction of rat uterine smooth muscle, Mol. Physiol. 1: 3.Google Scholar
  153. Janis, R., and Triggle, D., 1986, Effects of calcium channel antagonists on the myometrium, in: The Physiology and Biochemistry of the Uterus ( G. Huszar, ed.), CRC Press, Boca Raton, FL, pp. 201–223.Google Scholar
  154. Jeremy, J. Y., and Dandona, P., 1986, RU 486 antagonizes the inhibitory action of progesterone on prostacyclin and thromboxane A2 synthesis in cultured rat explants, Endocrinology, 119: 665.Google Scholar
  155. Jorgensen, A. O., and Jones, L. R., 1986, Localization of phospholamban in slow but not fast canine skeletal muscle fibers. An immunocytochemical and biochemical study, J. Biol. Chem. 261: 3775.PubMedGoogle Scholar
  156. Kaczmarek, L. K., 1986, Phorbol esters, protein phosphorylation and the regulation of neuronal ion channels, J. Exp. Biol. 124: 375.PubMedGoogle Scholar
  157. Kamm, K. E., and Stull, J. T., 1985, The function of myosin and myosin light chain kinase phosphorylation in smooth muscle, Annu. Rev. Pharmacol. Toxicol. 25: 593.PubMedGoogle Scholar
  158. Kamps, M. P., Taylor, S. S., and Sefton, B. M., 1984, Direct evidence that oncogenic tyrosine kinases and cyclic AMP-dependent protein kinase have homologous ATP-binding sites, Nature 310: 389.Google Scholar
  159. Kanamori, M., Naka, M., Asano, M., and Hidaka, H., 1981, Effects of N-(6-aminohexyl)-5-chloro-l-naphthalene-sulfonamide and other calmodulin antagonists (calmodulin interacting agents) on calcium-induced contraction of rabbit aortic strips, J. Pharmacol. Exp. Ther. 217: 494.Google Scholar
  160. Kawamoto, S., and Adelstein, R. S., 1987, Characterization of myosin heavy chains in cultured aorta smooth muscle cells. A comparative study, J. Biol. Chem. 262: 7282.PubMedGoogle Scholar
  161. Kawarabayashi, T., Kishikawa, T., and Sugimori, H., 1986, Effect of oxytocin on spontaneous electrical and mechanical activities in pregnant human myometrium, Am. J. Obstet. Gynecol. 155: 671.Google Scholar
  162. Ke, R., Vohra, M., and Casper, R., 1984, Prolonged inhibition of human myometrial contractility by intermittent isoproterenol, Am. J. Obstet. Gynecol. 149: 841.Google Scholar
  163. Kemp, B. E., and Pearson, R. B., 1985, Spatial requirements for location of basic residues in peptide substrates for smooth muscle myosin light chain kinase, J. Biol. Chem. 260: 3355.PubMedGoogle Scholar
  164. Kemp, B. E., Pearson, R. B., and House, C., 1982, Phosphorylation of a synthetic heptadecapetide by smooth muscle myosin light chain kinase, J. Biol. Chem. 257: 13349.Google Scholar
  165. Kemp, B. E., Pearson, R. B., and House, C., 1983, Role of basic residues in the phosphorylation of synthetic peptides of myosin light chain kinase, Proc. Natl. Acad. Sci. U. S. A. 80: 7471.Google Scholar
  166. Kemp, B. E., Pearson, R. B., Guerriero, V., Jr., Bagchi, I. C., and Means, A. R., 1987, The calmodulin binding domain of chicken smooth muscle myosin light chain kinase contains a pseudosubstrate sequence, J. Biol. C-hem. 262: 2542.Google Scholar
  167. Keravis, T. M., Wells, J. N., and Hardman, J. G., 1980, Cyclic nucleotide phosphodiesterase activities from pig coronary arteries. Lack of interconvertibility of major forms, Biochim. Biophys. Acta 613: 116.PubMedGoogle Scholar
  168. Kerrick, W. G., and Hoar, P. E., 1981, Inhibition of smooth muscle tension by cyclic AMP-dependent protein kinase, Nature 292: 253.PubMedGoogle Scholar
  169. Kirchberger, M. A., Tada, M., and Katz, A. M., 1974, Adenosine 3’:5’-monophosphate-dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum, J. Biol. Chem. 249: 6166.PubMedGoogle Scholar
  170. Kischer, C. W., Droegemueller, W., Shetlar, M., Chvapil, M., and Vining, J., 1980, Ultrastructural changes in the architecture of collagen in the human cervix treated with urea, Am. J. Pathol. 99: 525.Google Scholar
  171. Klee, C. B., 1980, Calmodulin: Structure-function relationships, in: Calcium and Cell Function, Vol. 1 ( W. Y. Cheung, ed.), Academic Press, New York, pp. 59–78.Google Scholar
  172. Kleissl, H. P., Van der Rest, M., Naftolin, F., Glorieux, F. H., and DeLeon, A., 1978, Collagen changes in the human uterine cervix at parturition, Am. J. Obstet. Gynecol. 130: 748.Google Scholar
  173. Kofinas, A. D., Rose, J. C., and Meis, P. J., 1987, Changes in cyclic adenosine monophosphate-phos-phodiesterase activity in nonpregnant and pregnant human myometrium, Am. J. Obstet. Gynecol. 157: 733.PubMedGoogle Scholar
  174. Krebs, E. G., and Beavo, J. A., 1979, Phosphorylation-dephosphorylation of enzymes, Annu. Rev. Biochem. 48: 923.PubMedGoogle Scholar
  175. Kroc, R. L., Steinetz, B. G., and Beach, V. L., 1959, The effects of estrogens, progestagens and relaxin in pregnant and nonpregnant laboratory rodents, Ann. N. Y. Acad. Sci. 75: 942.PubMedGoogle Scholar
  176. Laifer, S. A., Ghodgoankar, R. B., Zacur, H. A., and Dubin, N. H., 1986, The effect of aminophylline on uterine smooth muscle contractility and prostaglandin production in the pregnant rat uterus in vitro, Am. J. Obstet. Gynecol. 155: 212.PubMedGoogle Scholar
  177. Lamont, R. F., Rose, M., and Elder, M., 1985, Effect of bacterial products on prostaglandin E production by amnion cells, Lancet 2: 1331.PubMedGoogle Scholar
  178. Lange, A. P., Secher, N. J., Westergaard, J. G., and Skovgard, I., 1982, Prelabor evaluation of inductibility, Obstet. Gynecol. 60: 137.Google Scholar
  179. Larsson, L. I., Fahrenkrug, J., and Schaffalitzky de Muckadel, O. B., 1977, Vasoactive intestinal polypeptide occurs in nerve of the female genitourinary tract, Science 197: 1374.PubMedGoogle Scholar
  180. Lebowitz, E. A., and Cooke, R., 1979, Phosphorylation of uterine smooth muscle myosin permits actin-activation, J. Biochem. ( Tokyo ) 85: 1489.Google Scholar
  181. Lehman, W., 1986, Caldesmon association with smooth muscle thin filaments isolated in the presence and absence of calcium, Biochim. Biophys. Acta 885: 88.Google Scholar
  182. Lema, M. J., Pagani, E. D., Shemin, R., and Julian, F. J., 1986, Myosin isozymes in rabbit and human smooth muscles, Circ. Res. 59: 115.PubMedGoogle Scholar
  183. LePeuch, C. J., Haiech, J., and Demaille, J. G., 1979, Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium-calmodulin-dependent phosphorylations, Biochemistry 18: 5150.PubMedGoogle Scholar
  184. Leung, A. T., Imagawa, T., and Campbell, K. P., 1987, Structural characterization of the 1, 4-dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle, J. Biol. Chem. 262: 7943.PubMedGoogle Scholar
  185. Levin, R. M., and Weiss, B., 1979, Selective binding of antipsychotics and other psychoactive agents to the calcium-dependent activator of cyclic nucleotide phosphodiesterase, J. Pharmacol. Exp. Ther. 208: 454.Google Scholar
  186. Lewis, R. B., and Schulman, J. D., 1973, Influence of acetylsalicylic acid, an inhibitor of prostaglandin synthesis, on the duration of human gestation and labour, Lancet 2: 1159.PubMedGoogle Scholar
  187. Lukas, T. J., Burgess, W. H., Prendergast, F. G., Lau, W., and Watterson, D. M., 1986, Calmodulin-binding domains: Characterization of a phosphorylation and calmodulin binding site from myosin light chain kinase, Biochemistry 25: 1458.PubMedGoogle Scholar
  188. Maclennan, A. H., Green, R. C., Bryant-Greenwood, G. D., Greenwood, F. C., and Seamark, R. F., 1980, Ripening of the human cervix and induction of labor with purified porcine relaxin, Lancet 1: 220.PubMedGoogle Scholar
  189. MacLennan, D. H., Campbell, K. P., and Reithmeier, R. A. F., 1983, Calsequestrin, in: Calcium and Cell Function, Vol. 4 ( W. Y. Cheung, ed.), Academic Press, New York, pp. 151–173.Google Scholar
  190. Manabe, Y., Manabe, A., and Takahashi, A., 1982, F prostaglandin levels in amniotic fluid during balloon-induced cervical softening and labor at term, Prostaglandins 23: 247.PubMedGoogle Scholar
  191. Manchester, D., Margolis, H. S., and Sheldon, R. E., 1976, Possible association between maternal indometha-cin therapy and primary pulmonary hypertension of the newborn, Am. J. Obstet. Gynecol. 126: 467.PubMedGoogle Scholar
  192. Mars ton, S. B., and Lehman, W., 1985, Caldesmon is a Ca2+ regulatory component of native smooth-muscle thin filaments, Biochem. J. 231: 517.Google Scholar
  193. Marston, S. B., and Smith, C. W. J., 1985, The thin filaments of smooth muscles, J. Muscle Res. Cell Motil. 6: 669.PubMedGoogle Scholar
  194. Marston, S. B., Trevett, R. M., and Walters, M., 1980, Calcium ion-regulated thin filaments from vascular smooth muscle, Biochem. J. 185: 355.Google Scholar
  195. Martin, A., Fara, J. F., Alallon, W., Thoulon, J. M., Dumont, M., and Louisot, P., 1983, Enzymatic screening of human uterine cervical biopsies in nonpregnant and pregnant women at parturition, Am. J. Obstet. Gynecol. 145: 44.Google Scholar
  196. Mercado-Simmen, R. C., Bryant-Greenwood, G. D., and Greenwood, F. C., 1980, Relaxin receptor in the rat myometrium: Regulation by estrogen and relaxin, Endocrinology 110: 220.Google Scholar
  197. Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415: 81.PubMedGoogle Scholar
  198. Miller, J. R., Silver, P. J., and Stull, J. T., 1983, The role of myosin light chain kinase phosphorylation in beta-adrenergic relaxation of tracheal smooth muscle, Mol. Pharmacol. 24: 235.PubMedGoogle Scholar
  199. Minamoto, T., Arai, K., Hirakawa, S., and Nagai, Y., 1987, Immunohistochemical studies on collagen types in the uterine cervix in pregnant and nonpregnant states, Am. J. Obstet. Gynecol. 156: 138.Google Scholar
  200. Miyata, H., and Chacko, S., 1986, Role of tropomyosin in smooth muscle contraction: Effect of tropomyosin binding to actin on actin activation of myosin Atpase, Biochemistry 25: 2725.Google Scholar
  201. Mochizuki, M., and Tojo, S., 1980, Effect of dehydroepiandrosterone sulfate on softening and dilatation of the uterine cervix in pregnant women, in: Dilatation of the Uterine Cervix: Connective Tissue Biology and Clinical Management ( F. Naftolin and P. G. Stubblefield, eds.), Raven Press, New York, p. 267.Google Scholar
  202. Morgan, J. P., and Morgan, K. G., 1982, Vascular smooth muscle: The first recorded Ca2+ transients, Pflugers Arch. 395: 75.PubMedGoogle Scholar
  203. Movsesian, M. A., Nishikawa, M., and Adelstein, R. S., 1984, Phosphorylation of phospholamban by calcium-activated, phospholipid-dependent protein kinase. Stimulation of cardiac sarcoplasmic reticulum calcium uptake, J. Biol. Chem. 259: 8029.PubMedGoogle Scholar
  204. Mrwa, U., Guth, K., Riiegg, J. C., Paul, R. J., Bostrom, S., Barsotti, R., and Hartshorne, D., 1985, Mechanical and biochemical characterization of the contraction elicited by a calcium-independent myosin light chain kinase in chemically skinned smooth muscle, Experientia 41: 1002.PubMedGoogle Scholar
  205. Muller, M. J., and Baer, H. P., 1983, Relaxant effects of forskolin in smooth muscle: Role of cyclic AMP, Arch. Pharmacol. 322: 78.Google Scholar
  206. Ngai, P. K., and Walsh, M. P., 1984, Inhibition of smooth muscle actin-activated myosin Mg2+-Atpase activity by caldesmon, J. Biol. Chem. 259: 13656.PubMedGoogle Scholar
  207. Ngai, P. K., and Walsh, M. P., 1985, Properties of caldesmon isolated from chicken gizzard, Biochem. J. 230: 695.PubMedGoogle Scholar
  208. Ngai, P. K., and Walsh, M. P., 1987, The effects of phosphorylation of smooth-muscle caldesmon, Biochem J. 244: 417.PubMedGoogle Scholar
  209. Ngai, P. K., Scott-Woo, G. C., Lim, M. S., Sutherland, C., and Walsh, M. P. 1987, Activation of smooth muscle myosin Mg2+-Atpase by native thin filaments and actin/tropomyosin, J. Biol. Chem. 262: 5352.PubMedGoogle Scholar
  210. Niebyl, J. R., and Witter, F. R., 1986, Neonatal outcome after indomethacin treatment for preterm labor, Am. J. Obstet. Gynecol. 155: 747.PubMedGoogle Scholar
  211. Niebyl, J. R., Blake, D. A., White, R. D., Kumor, K. M., Dubin, N. H., Robinson, J. C., and Egner, P. G., 1980, The inhibition of premature labor with indomethacin, Am. J. Obstet. Gynecol. 136: 1014.PubMedGoogle Scholar
  212. Nishikawa, M., Hidaka, H., and Adelstein, R. S., 1983, Phosphorylation of smooth muscle heavy meromyosin by calcium-activated phosopholipid-dependent protein kinase. The effect on actin-activated Mg2+-Atpase activity, J. Biol. Chem. 258: 14069.PubMedGoogle Scholar
  213. Nishikori, K., and Maeno, H., 1979, Close relationship between adenosine 3’:5’-monophosphate-dependent endogenous phosphorylation of a specific protein and stimulation of calcium uptake in rat uterine microsomes, J. Biol. Chem. 254: 6009.Google Scholar
  214. Nishikori, K., Weisbrodt, N. W., Sherwood, O. D., and Sanborn, B. M., 1983, Effects of relaxin on rat uterine myosin light chain kinase activity and myosin light chaint phosphorylation, J. Biol. Chem. 258: 2468.PubMedGoogle Scholar
  215. Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature 308: 693.PubMedGoogle Scholar
  216. Noiman, E. S., 1980, Phosphorylation of smooth muscle myosin light chains by cAMP-dependent protein kinase, J. Biol. Chem. 255: 11067.PubMedGoogle Scholar
  217. Norstrom, A., Bryman, I., Wiqvist, N., Swadesh, S., and Lindblom, B., 1984, Inhibitory action of relaxin on human cervical smooth muscle, J. Clin. Endocrinol. Metab. 59: 379.Google Scholar
  218. Obrink, B., 1973, A study of the interactions between monomelic tropocollagen and glycosaminoglycans, Eur. J. Biochem. 33: 387.Google Scholar
  219. Ohnishi, S. T., and Devlin, T. M., 1979, Calcium ionophore activity of a prostaglandin B! derivative (PGB), Biochem. Biophys. Res. Commun. 89: 240.PubMedGoogle Scholar
  220. Okazaki, T., Casey, M. L., Okita, J. R., MacDonald, P. C., and Johnston, J. M., 1981, Initiation of human parturition. XII. Biosynthesis and metabolism of prostaglandins in human fetal membranes and uterine decidua, Am. J. Obstet. Gynecol. 139: 373.PubMedGoogle Scholar
  221. Olins, G. M., and Bremel, R. D., 1982, Phosphorylation of myosin in mammary myoepithelial cells in response to oxytocin, Endocrinology 110: 1933.PubMedGoogle Scholar
  222. Onishi, H., and Wakabayashi, T., 1982, Electron microscopic studies of myosin molecules from chicken gizzard muscle. 1: The formation of the intramolecular loop in the myosin tail, J. Biochem. ( Tokyo ) 92: 871.Google Scholar
  223. Ottesen, B., 1983, Vasoactive intestinal polypeptide as a neurotransmitter in the female genital tract, Am. J. Obstet. Gynecol. 147: 208.Google Scholar
  224. Ottesen, B., Wagner, G., and Fahrenkrug, J., 1980, Vasoactive intestinal polypeptide (VIP) inhibits prostaglandin F2a-induced activity of the rabbit myometrium, Prostaglandins 19: 427.PubMedGoogle Scholar
  225. Ottesen, B., Larsen, J. J., Fahrenkrug, J., Stjernquist, M., and Sundler, F., 1981, Distribution and motor effect of VIP in female genital tract, Endocrinol. Metab. 3: E32.Google Scholar
  226. Park, S., and Rasmussen, H., 1986, Carbachol-induced protein phosphorylation changes in bovine tracheal smooth muscle, J. Biol. Chem. 261: 15734.Google Scholar
  227. Parker, I., Ito, Y., Kuriyama, H., and Miledi, R., 1987, 1-Adrenergic agonists and cyclic AMP decrease intracellular resting free-calcium concentration in ileum smooth muscle, Proc. R. Soc. Lond. [Biol.] 30: 207.Google Scholar
  228. Parks, T. P., Nairn, A. C., Greengard, P., and Jamieson, J. D., 1987, The cyclic nucleotide-dependent phosphorylation of aortic smooth muscle membrane proteins, Arch. Biochem. Biophys. 255: 361.PubMedGoogle Scholar
  229. Pato, M. D., and Adelstein, R. S., 1980, Dephosphorylation of the 20, 000-dalton light chain of myosin by two different phosphatases from smooth muscle, J. Biol. Chem. 255: 6535.PubMedGoogle Scholar
  230. Pato, M. D., and Kerc, E., 1985, Purification and characterization of a smooth muscle myosin phosphatase from turkey gizzards, J. Biol. Chem. 260: 12359.Google Scholar
  231. Pato, M. D., and Kerc, E., 1986, Limited proteolytic digestion and dissociation of smooth muscle phosphatase-1 modifies its substrate specificity, J. Biol. Chem. 261: 3770.Google Scholar
  232. Payne, M. E., Elzinga, M., and Adelstein, R. S., 1986, Smooth muscle myosin light chain kinase. Amino acid sequence at the site phosphorylated by adenosine cyclic 3’, 5’-phosphate-dependent protein kinase whether or not calmodulin is bound, J. Biol. Chem. 261: 16346.PubMedGoogle Scholar
  233. Pearson, R. B., Jakes, R., John, M., Kendrick-Jones, J., and Kemp, B. E., 1984, Phosphorylation site sequence of smooth muscle myosin light chain (Mr = 20, 000), FEBS Lett. 168: 108.PubMedGoogle Scholar
  234. Pearson, R. B., Misconi, L. Y., and Kemp, B. E., 1986, Smooth muscle myosin kinase requires residues on the COOH-terminal side of the phosphorylation site. Peptide inhibitors, J. Biol. Chem. 261: 25.PubMedGoogle Scholar
  235. Persechini, A., and Hartshorne, D. J., 1981, Phosphorylation of smooth muscle myosin: Evidence for cooper-ativity between the myosin heads, Science 213: 1383.PubMedGoogle Scholar
  236. Persechini, A., Kamm, K. E., and Stull, J. T., 1986, Different phosphorylated forms of myosin in contracting tracheal smooth muscle, J. Biol. Chem. 261: 6293.PubMedGoogle Scholar
  237. Petrie, R. H., 1981, Tocolysis using magnesium sulfate, Semin. Perinatol. 5: 226.Google Scholar
  238. Pope, B., Hoh, J. F. Y., and Weeds, A., 1980, The Atpase activities of rat cardiac myosin isoenzymes, FEBS Lett. 118: 205.PubMedGoogle Scholar
  239. Popescu, L. M., and Ignat, P., 1983, Calmodulin-dependent Ca2 +-pump Atpase of human smooth muscle sarcolemma, Cell Calcium 4: 219.PubMedGoogle Scholar
  240. Potter, J. D., Strang-Brown, P., Walker, P. L., and Iida, S., 1983, Ca2+ binding to calmodulin, Methods Enzymol. 102: 135.PubMedGoogle Scholar
  241. Prins, R. P., Bolton, R. N., Mark, C., Neilson, D. R., and Watson, P., 1983, Cervical ripening with intravaginal prostaglandin E2 gel, Obstet. Gynecol. 61: 459.Google Scholar
  242. Raeymaekers, L., and Jones, L. R., 1986, Evidence for the presence of phospholamban in the endoplasmic reticulum of smooth muscle, Biochim. Biophys. Acta 882: 258.PubMedGoogle Scholar
  243. Rapoport, R. M., and Murad, F., 1983, Endothelium-dependent and nitrovasodilator-induced relaxation of vascular smooth muscle: Role of cyclic GMP, J. Cyclic Nucleotide Protein Phosphor. Res. 9: 281.Google Scholar
  244. Reiner, O., and Marshall, J. M., 1976, Action of prostaglandin, PGF2a, on the uterus of the pregnant rat, Arch. Pharmacol. 292: 243.Google Scholar
  245. Riemer, R. K., Jacobs, M. M., Wu, Y. Y., and Roberts, J. M., 1986, Progesterone-induced rabbit myometrial beta-adrenergic response is accompanied by increased concentration and expression of stimulatory adenylate cyclase coupling protein (Gs). Program of the 33rd Annual Meeting of the Society for Gynecologic Investigation, Toronto, Canada, p. 171 (abstract 274P).Google Scholar
  246. Roberts, J. M., Insel, P. A., and Goldfein, A., 1981, Regulation of myometrial adrenoceptors and adrenergic response by sex steroids, Mol. Pharmacol. 20: 52.Google Scholar
  247. Romero, R., Emamian, M., Quintero, R., Wan, M., Hobbins, J. C., and Mitchell, M, 1986, Amniotic fluid prostaglandin levels and intra-amniotic infections, Lancet 1: 1380.PubMedGoogle Scholar
  248. Rorie, D. K., and Newton, M., 1967, Histologic and chemical studies of the smooth muscle in the human cervix and uterus, Am. J. Obstet. Gynecol. 99: 466.Google Scholar
  249. Ross, E. M., and Gilman, A. G., 1980, Biochemical properties of hormone-sensitive adenylate cyclase, Annu. Rev. Biockem. 49: 533.Google Scholar
  250. Rossier, M. F., Capponi, A. M., and Vallotton, M. B., 1987, Metabolism of inositol 1, 4, 5-trisophosphate in permeabilized rat aortic smooth muscle cells. Dependence on calcium concentration, Biochem. J. 245: 305.PubMedGoogle Scholar
  251. Rovner, A. S., Thompson, M. M., and Murphy, R. A., 1986, Two different heavy chains are found in smooth muscle myosin, Am. J. Physiol. 250: C861.PubMedGoogle Scholar
  252. Riiegg, J. C., DiSalvo, J., and Paul, R. J., 1982, Soluble relaxation factor from vascular smooth muscle: A myosin light chain phosphatase? Biochem. Biophys. Res. Commun. 106: 1126.Google Scholar
  253. Saito, Y., Sakamoto, H., MacLusky, N. J., and Naftolin, F., 1985, Correlation between gap junctions and steroid hormone receptors in myometrial tissue of pregnant and postpartum rats, Am. J. Obstet. Gynecol. 151: 805.Google Scholar
  254. Sakamoto, H., and Huszar, G., 1984a, A mechanism for action of oxytocin in parturition, Proc. Soc. Gynecol. Invest. 176a.Google Scholar
  255. Sakamoto, H., and Huszar, G., 1984b, Nitrendipine prolongs rat parturition: No changes occur in progesterone withdrawal, Endocrinology 115: 959.Google Scholar
  256. Sanborn, B. M., Held, B., and Kuo, H. S., 1975, Specific estrogen binding proteins in human cervix, J. Steroid Biochem. 6: 1107.PubMedGoogle Scholar
  257. Sandahl, B., Ulmsten, U., and Andersson, K. -E., 1979, Trial of the calcium antagonist nifedipine in the treatment of primary dysmenorrhoea, Arch. Gynecol. 227: 247.Google Scholar
  258. Sanders, C., Burtnick, L. D., and Smillie, L. B., 1986, Native chicken gizzard tropomyosin is predominantly a P7-heterodimer, J. Biol. Chem. 261: 12774.PubMedGoogle Scholar
  259. Sasaki, K., Nakano, R., Kadoya, M., Iwao, K., and Sowa, S. M., 1982, Cervical ripening with dehydroe-piandrosterone sulphate, Br. J. Obstet. Gynaecol. 89: 195.PubMedGoogle Scholar
  260. Scheid, C. R., Honeyman, T. W., and Fay, F. S., 1979, Mechanism of (3-adrenergic relaxation of smooth muscle, Nature 277: 32.PubMedGoogle Scholar
  261. Seidel, J. C., 1980, Fragmentation of gizzard myosin by a-chymotrypsin and papain, the effects on Atpase activity, and the interaction with actin, J. Biol. Chem. 255: 4355.PubMedGoogle Scholar
  262. Sellers, J. R., Pato, M. D., and Adelstein, R. S., 1981, Reversible phosphorylation of smooth muscle myosin, heavy meromyosin and platelet myosin, J. Biol. Chem. 256: 13137.PubMedGoogle Scholar
  263. Sellers, J. R., Chock, P. B., and Adelstein, R. S., 1983, The apparently negatively cooperative phosphorylation of smooth muscle myosin at low ionic strength is related to its filamentous state, J. Biol. Chem. 258: 14181.PubMedGoogle Scholar
  264. Sherry, J. M. F., Gorecka, A., Aksoy, M. O., Dabrowska, R., and Hartshorne, D. J., 1978, Roles of calcium and phosphorylation in the regulation of the activity of gizzard myosin, Biochemistry 17: 4411.PubMedGoogle Scholar
  265. Sherwood, O. D., Change, C. C., Bevier, G. W., Diehl, J. R., and Dziuk, P. J., 1976, Relaxin concentrations in pig plasma following the administration of prostaglandin F2a during late pregnancy, Endocrinology 98: 875.PubMedGoogle Scholar
  266. Shigekawa, M., Finegan, J. -A., and Katz, A. M., 1976, Calcium transport Atpase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum, J. Biol. Chem. 251: 6894.PubMedGoogle Scholar
  267. Silver, P. J., and Stull, J. T., 1983, Effects of the calmodulin antagonist, fluphenazine, on phosphorylation of myosin and phosphorylase in intact smooth muscle, Mol. Pharmacol. 23: 665.PubMedGoogle Scholar
  268. Singh, T. J., Akatsuka, A., and Huang, K. -P., 1983, Phosphorylation of smooth muscle myosin light chain by five different kinases, FEBS Lett. 159: 217.PubMedGoogle Scholar
  269. Skinner, K. A., and Challis, J. R. G., 1985, Changes in the synthesis and metabolism of prostaglandins by human fetal membranes and decidua at labor, Am. J. Obstet. Gynecol. 151: 519.PubMedGoogle Scholar
  270. Small, J. V., 1977, The contractile apparatus of the smooth muscle cell, in: The Biochemistry of Smooth Muscle ( N. L. Stephens, ed.), University Park Press, Baltimore, MD, p. 379.Google Scholar
  271. Small, J. V., Fiirst, D. O., and DeMey, J., 1986, Localization of filamin in smooth muscle, J. Cell Biol. 102: 210.PubMedGoogle Scholar
  272. Smith, C. W. J., Pritchard, K., and Marston, S. B., 1987, The mechanism of Ca2+ regulation of vascular smooth muscle thin filaments by caldesmon and calmodulin, J. Biol. Chem. 262: 116.PubMedGoogle Scholar
  273. Sobieszek, A., and Small, J. V., 1977, Regulation of the actin-myosin interaction in vertebrate smooth muscle: Activation via a myosin light-chain kinase and the effect of tropomyosin, J. Mol. Biol. 112: 559.PubMedGoogle Scholar
  274. Sobue, K., Muramoto, Y., Fujita, M., and Kakiuchi, S., 1981a, Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin, Proc. Natl. Acad. Sci. U. S. A. 78: 5652.Google Scholar
  275. Sobue, K., Muramoto, Y., Fujita, M., and Kakiuchi, S., 1981b, Calmodulin-binding protein from chicken gizzard that interacts with F-actin, Biochem. Int. 2: 469.Google Scholar
  276. Soloff, M. S., and Sweet, P., 1982, Oxytocin inhibition of (calcium-magnesium)-Atpase activity in rat myometrial plasma membranes, J. Biol. Chem. 275: 10687.Google Scholar
  277. Somlyo, A. P., 1985, Excitation contraction coupling and the ultrastructure of smooth muscle, Circ. Res. 57: 497.PubMedGoogle Scholar
  278. Somlyo, A. P., and Somlyo, A. V., 1974, Ultrastructure of smooth muscle, in: Methods in Pharmacology, Vol. 3 ( E. E. Daniels and D. M. Paton, eds.), Plenum Press, New York, p. 3.Google Scholar
  279. Somlyo, A. P., Somlyo, A. V., Shuman, H., and Endo, M., 1982, Calcium and monovalent ions in smooth muscle, Fed. Proc. 41: 2883.Google Scholar
  280. Somlyo, A. V., 1980, Ultrastructure of vascular smooth muscle, in: The Handbook of Physiology. The Cardiovascular System, Vol. II, Vascular Smooth Muscle ( D. F. Bohr, A. P. Somlyo, and H. V. Sparks, eds.) American Physiological Society, Washington, pp. 33–67.Google Scholar
  281. Somlyo, A. V., Butler, T. M., Bond, M., and Somlyo, A. P., 1981, Myosin filaments have non-phosphorylated light chains in relaxed smooth muscle, Nature 294: 567.PubMedGoogle Scholar
  282. Somylo, A. V., Bond, M., Somlyo, A. P., and Scarpa, A., 1985, Inositol trisphosphate induced calcium release and contraction in vascular smooth muscle, Proc. Natl. Acad. Sci. U. S. A. 82: 5231.Google Scholar
  283. Spät, A., Fabiato, A., and Rubin, R. P., 1986, Binding of inositol triphosphate by a liver microsomal fraction, Biochem. J. 233: 929.PubMedGoogle Scholar
  284. Stull, J. T., Nunnally, M. H., and Michnoff, C. H., 1986, in: The Enzymes, Vol. XVII, Academic Press, New York, pp. 113–166.Google Scholar
  285. Stys, S. J., Dresser, B. L., Otte, T. E., and Clark, K. E., 1981, Effect of prostaglandin E2 on cervical compliance in pregnant ewes, Am. J. Obstet. Gynecol. 140: 415.PubMedGoogle Scholar
  286. Sumimoto, K., and Kuriyama, H., 1986, Mobilization of free Ca2+ measured during contraction-relaxation cycles in smooth muscle cells of the porcine coronary artery using quin-2, Pflugers Arch. 406: 173.PubMedGoogle Scholar
  287. Suzuki, H., Kamata, T., Onishi, H., and Watanabe, S., 1982, Adenosine triphosphate-induced reversible change in the conformation of chicken gizzard myosin and heavy meromyosin, J. Biochem. ( Tokyo ) 91: 1699.Google Scholar
  288. Szlachter, N. B., O’Byrne, E. M., Goldsmith, L., Steinetz, B. G., and Weiss, G., 1980, Myometrial-inhibiting activity of relaxin-containing extracts of human corpora lutea of pregnancy, Am. J. Obstet. Gynecol. 136: 584.Google Scholar
  289. Szpacenko, A., and Dabrowska, R., 1986, Functional domain of caldesmon, FEBS Lett. 202: 182.PubMedGoogle Scholar
  290. Tada, M., and Katz, A. M., 1982, Phosphorylation of the sarcoplasmic reticulum and sarcolemma, Annu. Rev. Physiol. 44: 401.PubMedGoogle Scholar
  291. Takahashi, M., Seagar, M. J., Jones, J. F., Reber, B. F. X., and Catterall, W. A., 1987, Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle, Proc. Natl. Acad. Sci. U. S. A. 84: 5478.PubMedGoogle Scholar
  292. Takio, K., Blumenthal, D. K., Edelman, A. M., Walsh, K. A., Krebs, E. G., and Titani, K., 1985, Amino acid sequence of an active fragment of rabbit skeletal muscle myosin light chain kinase, Biochemistry 24: 6028.PubMedGoogle Scholar
  293. Takio, K., Blumenthal, D. K., Walsh, K. A., Titani, K., and Krebs, E. G., 1986, Amino acid sequence of rabbit skeletal muscle myosin light chain kinase, Biochemistry 25: 8049.PubMedGoogle Scholar
  294. Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., and Numa, S., 1987, Primary structure of the receptor for calcium channel blockers from skeletal muscle, Nature 328: 313.PubMedGoogle Scholar
  295. Tansey, R. R., and Padykula, H. A., 1978, Cellular responses to experimental inhibition of collagen degradation in the postpartum rat uterus, Anat. Ree. 191: 287.Google Scholar
  296. Theobald, P. W., Rath, W., Kuhnle, H., and Kuhn, W., 1982, Histologic and electron-microscopic examinations of collagenous connective tissue of the non-pregnant cervix, the pregnant cervix, and the pregnant prostaglandin-treated cervix, Arch. Gynecol. 231: 241.Google Scholar
  297. Triggle, D. J., and Janis, R. A., 1987, Calcium channel ligands, Annu. Rev. Pharmacol. Toxicol. 27: 347.PubMedGoogle Scholar
  298. Trybus, K. M., and Lowey, S., 1985, Mechanism of smooth muscle myosin phosphorylation, J. Biol. Chem. 260: 15988.Google Scholar
  299. Trybus, K. M., Huiatt, T. W., and Lowey, S., 1982, A bent monomeric conformation of myosin from smooth muscle, Proc. Natl. Acad. Sci. U. S. A. 79: 6151.Google Scholar
  300. Tsien, R. W., 1983, Calcium channels in excitable cell membranes, Annu. Rev. Physiol. 45: 341.PubMedGoogle Scholar
  301. Tuazon, P. T., and Traugh, J. A., 1984, Activation of actin-activated Atpase in smooth muscle by phosphorylation of myosin light chain with protease-activated kinase I, J. Biol. Chem. 259: 541.PubMedGoogle Scholar
  302. Uldbjerg, N., Ekman, G., Malmstrom, A., Olsson, K., and Ulmsten, U., 1983, Ripening of the human uterine cervix related to changes in collagen, glycosaminoglycans, and collagenolytic activity, Am. J. Obstet. Gynecol. 147: 662.Google Scholar
  303. Ulmsten, U., Andersson, K. -E., and Forman, A., 1978, Relaxing effects of nifedipine on the nonpregnant human uterus in vitro and in vivo, Obstet. Gynecol. 52: 436.Google Scholar
  304. Ulmsten, U., Andersson, K. -E., and Wingerup, L., 1980, Treatment of premature labor with the calcium antagonist nifedipine, Arch. Gynecol. 229: 1.Google Scholar
  305. Van Breemen, C., Aaronson, P., Loutzenhiser, R., and Meisheri, K., 1982, Calcium fluxes in isolated rabbit aorta and guinea pig tenia coli, Fed. Proc. 41: 2891.Google Scholar
  306. Van Bieemen, C., Leijten, P., Yamamoto, H., Aaronson, P., and Cauvin, C., 1986, Calcium activation of vascular smooth muscle, Hypertension 8 [Suppl. II]: II - 89.Google Scholar
  307. Vandekerckhove, J., and Weber, K., 1979, The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit slow skeletal muscle. A protein-chemical analysis of muscle actin differentiation, Differentiation 14: 123–133.Google Scholar
  308. Verhoeff, A., and Garfield, R., 1986, Ultrastructure of the myometrium and the role of gap junctions in myometrial function, in: The Physiology and Biochemistry of the Uterus in Pregnancy and Labor ( G. Huszar, ed.), CRC Press, Boca Raton, FL, p. 73.Google Scholar
  309. Wahl, L. M., Blandau, R. J., and Page, R. C., 1977, Effect of hormones on collagen metabolism and collagenase activity in the pubic symphysis ligament of the guinea pig, Endocrinology 10: 571.Google Scholar
  310. Walker, J. W., Somlyo, A. V., Goldman, Y. E., Somlyo, A. P., and Trentham, D. R., 1987, Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1, 4, 5-trisphosphate, Nature 327: 249.Google Scholar
  311. Wallner, B. P., Mattaliano, R. J., Hession, C., et al., 1986, Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity, Nature 320: 77.PubMedGoogle Scholar
  312. Walsh, M. P., 1985, Limited proteolysis of smooth muscle myosin light chain kinase, Biochemistry 24: 3124.Google Scholar
  313. Walsh, M. P., Hinkins, S., Flink, I. L., and Hartshorne, D. J., 1982a, Bovine stomach myosin light chain kinase: Purification, characterization and comparison with the turkey gizzard enzyme, Biochemistry 21: 6890.PubMedGoogle Scholar
  314. Walsh, M. P., Dabrowska, R., Hinkins, S., and Hartshorne, D. J., 1982b, Calcium-independent myosin light chain kinase of smooth muscle: Preparation by limited chymotryptic digestion of the Ca2+-dependent enzyme, purification and characterization, Biochemistry 21: 1919.PubMedGoogle Scholar
  315. Walsh, M. P., Bridenbaugh, R., Hartshorne, D. J., and Kerrick, W. G. L., 1982c, Phosphorylation-dependent activated tension in skinned gizzard muscle fibers in the absence of Ca2+, J. Biol. Chem. 257: 5987.PubMedGoogle Scholar
  316. Walsh, M. P., Bridenbaugh, R., Kerrick, W. G. L., and Hartshorne, D. J., 1983, Ca2+-independent myosin light chain kinase: Evidence in favor of the phosphorylation theory of regulation in smooth muscle, Fed. Proc. 42: 45.PubMedGoogle Scholar
  317. Wathes, D. C., and Porter, D. G., 1982, Effect of uterine distension and oestrogen treatment on gap junction formation in the myometrium of the rat, J. Reprod. Fertil. 65: 497.PubMedGoogle Scholar
  318. Werth, D. K., Haeberle, J. R., and Hathaway, D. R., 1982, Purification of a myosin phosphatase from bovine aortic smooth muscle, J. Biol. Chem. 257: 7306.PubMedGoogle Scholar
  319. Williams, D. A., and Fay, F. S., 1986, Calcium transients and resting levels in isolated smooth muscle cells as monitored with quin-2, Am. J. Physiol. 250: C779.PubMedGoogle Scholar
  320. Williams, D. A., Fogarty, K. E., Tsien, R. Y., and Fay, F. S., 1985, Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using fiira-2, Nature 318: 558.PubMedGoogle Scholar
  321. Williams, D. A., Becker, P. L., and Fay, F. S., 1987, Regional changes in calcium underlying contraction of single smooth muscle cells, Science 235: 1644.PubMedGoogle Scholar
  322. Williams, J. K., Lewis, M. L., Cohen, G. R., and O’Brien, W. F., 1988, The sequential use of estradiol and prostaglandin E2 topical gels for cervical ripening in high-risk term pregnancies requiring induction of labor, Am. J. Obstet. Gynecol. 158: 55.PubMedGoogle Scholar
  323. Wilson, T., Liggins, G. C., Aimer, G. P., and Skinner, S. J. M., 1985, Partial purification and characterization of two compounds from amniotic fluid which inhibit phospholipase activity in human endometrial cells, Biochem. Biophys. Res. Commun. 131: 22.PubMedGoogle Scholar
  324. Woessner, J. F., Jr., 1979, Total, latent and active collagenase during the course of postpartum involution of the rat uterus, Biochem. J. 180: 95.PubMedGoogle Scholar
  325. Woolley, D. E., 1979, Human collagenases: Comparative and immunolocalization studies, Ciba Found. Symp. 75: 69.PubMedGoogle Scholar
  326. Wuytack, F., Raeymaekers, L., Verbist, J., De Smedt, H., and Casteels, R., 1984, Evidence for the presence in smooth muscle of two types of Ca2 +-transport Atpase, Biochem. J. 224: 445.Google Scholar
  327. Wuytack, F., Raeymaekers, L., and Casteels, R., 1985, The Ca2 +-transport ATPases in smooth muscle, Experientia 41: 900.PubMedGoogle Scholar
  328. Wuytack, F., Raeymaekers, L., Verbist, J., Jones, L. R., and Casteels, R., 1987, Smooth-muscle endoplasmic reticulum contains a cardiac-like form of calsequestrin, Biochem. Biophys. Acta 899: 151.Google Scholar
  329. Yamaguchi, K., Hirata, M., and Kuriyama, H., 1987, Calmodulin activates inositol 1, 4, 5-trisphosphate 3-kinase activity in pig aortic smooth muscle, Biochem. J. 244: 787.Google Scholar
  330. Zuidema, L. J., Khan-Dawood, F., Dawood, M. Y., and Work, B. A., 1986, Hormones and cervical ripening: Dehydroepiandrosterone sulfate, estradiol, estriol, and progesterone, Am. J. Obstet. Gynecol. 155: 1252.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Gabor Huszar
    • 1
  • Michael P. Walsh
    • 2
  1. 1.Department of Obstetrics and GynecologyYale University School of MedicineNew HavenUSA
  2. 2.Department of Medical BiochemistryUniversity of CalgaryCalgaryCanada

Personalised recommendations