Brain Stimulation for Pain Control

  • Yoshio Hosobuchi
Part of the Contemporary Perspectives in Neurosurgery book series (COPENEU)


Electrical stimulation of specific anatomical sites in the human brain has been used to obtain relief or suppression of pain since 1960, when Heath and Mickle reported suppression of pain in patients by stimulation of the septal area. 1 Others subsequently used therapeutic stimulation of subcortical areas, such as the median forebrain bundle2 and the caudate nucleus,3 but, for more than a decade, little attention was paid to these sporadic clinical efforts.


Catheter Osteoporosis Pancreatitis Neuropathy Decadron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heath RG, Mickle WA: Evaluation of seven years’ experience with depth electrode studies in human patients, in Ramsey ER, O’Doherty DS (eds): Electrical Studies on the Unanesthetized Brain. New York, Hoeber, 1960, pp 214–247.Google Scholar
  2. 2.
    Erwin FR, Brown CE, Mark VH: Striatal influence on facial pain. Confin Neurol 1966; 27: 75–90.CrossRefGoogle Scholar
  3. 3.
    Balagura S, Ralph T: The analgesic effect of electrical stimulation of the diencephalon and the mesencephalon. Brain Res 1973; 60: 369–379.PubMedCrossRefGoogle Scholar
  4. 4.
    Mazars GJ, Merienne L, Ciolocca C: Stimulations thalamiques intermittentes analgiques. Note pm-liminaire. Rev Neurol. 1973; 128: 273–279.PubMedGoogle Scholar
  5. 5.
    Hosobuchi Y, Adams JE, Rutkin B: Chronic thalamic stimulation for the control of facial anesthesia dolorosa. Arch Neurol. 1973; 29: 158–161.PubMedCrossRefGoogle Scholar
  6. 6.
    Hosobuchi Y: Chronic brain stimulation for the treatment of intractable pain. Res Clin Stud Headache 1978; 5: 122–126.PubMedGoogle Scholar
  7. 7.
    Reynolds DV: Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 1969; 164: 444–445.PubMedCrossRefGoogle Scholar
  8. 8.
    Liebeskind JC, Guilbaud G, Besson JM, et al: Analgesia from electrical stimulation of the periaqueductal gray matter in the cat: behavioral observations and inhibitory effects on spinal cord interneurons. Brain Res. 1973; 50: 441–446.PubMedCrossRefGoogle Scholar
  9. 9.
    Mayer DJ, Wolfe TL, Akil H, et al; Analgesia from electrical stimulation in the brainstem of the rat. Science 1971; 174: 1351–1354.PubMedCrossRefGoogle Scholar
  10. 10.
    Hosobuchi Y, Adams JE, Lipchitz R: Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science 1977; 197: 183–186.PubMedCrossRefGoogle Scholar
  11. 11.
    Richardson DE, Akil H: Pain reduction by electrical brain stimulation in man; chronic self stimulation in the periaqueductal gray matter. J Neurosurg 1977; 47: 184–194.PubMedCrossRefGoogle Scholar
  12. 12.
    Hosobuchi Y: The current status of analgesic brain stimulation. Acta Neurochir Suppl 1980; 30: 219–227.CrossRefGoogle Scholar
  13. 13.
    Hosobuchi Y: Tryptophan reversal of tolerance to analgesia induced by central gray stimulation. Lancet 1978; 2: 47.PubMedCrossRefGoogle Scholar
  14. 14.
    Cassinari V: Surgical operations on the neuraxis that have given rise to central pain, in Pagni CA (ed): Central Pain. Cambridge, Harvard University Press, pp 34–93.Google Scholar
  15. 15.
    Tasker RR: Clinical neurophysiological investigation of deafferentation pain, in Bonica J, Tsuda T, Hawrylyshyn P (eds): Advances in Pain Research and Therapy. New York, Raven Press, 1983, vol 5, pp 713–738.Google Scholar
  16. 16.
    Hosobuchi Y: Analgesia induced by brain stimulation with chronically implanted electrodes, in Schmidek HH, Sweet WH (eds): Operative Neurosurgical Techniques. New York, Grune & Stratton, 1982, pp 981–991.Google Scholar
  17. 17.
    Nielson KD, Adams JE, Hosobuchi Y: Experience with dorsal column stimulation for relief of chronic intractable pain: 1968–1973. Surg Neurol 1975; 4: 148–152.PubMedGoogle Scholar
  18. 18.
    Shulman R, Turnbull IM, Diewold P: Psychiatric aspects of thalamic stimulation for neuropathic pain. Pain 1982; 13: 127–135.PubMedCrossRefGoogle Scholar
  19. 19.
    Hosobuchi Y, Lamb S, Baskin D: Tryptophan loading may reverse tolerance to opiate analgesics in humans. A preliminary report. Pain 1980; 9: 161–169.PubMedCrossRefGoogle Scholar
  20. 20.
    Hosobuchi Y: Combined electrical stimulation of the periaqueductal and sensory thalamus. Appl Neurophysiol 1983; 46: 112–115.PubMedGoogle Scholar
  21. 21.
    Schaltenbrand G, Bailey P: Introduction to Stereotaxis with an Atlas of the Human Brain. New York, Grune & Stratton, 1959, vol 2, plates 38–47.Google Scholar
  22. 22.
    Hosobuchi Y: Subcortical electrical stimulation for control of intractable pain in humans. Report of 122 cases (1970–1984). J Neurosurg. 1986; 64: 543–553.PubMedCrossRefGoogle Scholar
  23. 23.
    Mazars GJ: Intermittent stimulation of nucleus ventralis posterolateralis for intractable pain. Surg Neurol. 1975; 4: 93–95.PubMedGoogle Scholar
  24. 24.
    Judson BA, Himmelberger DU, Goldstein A: The naloxone test for opiate dependence. Clin Pharmacol Ther. 1980; 27: 492–501.PubMedCrossRefGoogle Scholar
  25. 25.
    Anderson LS, Black RG, Abraham J, et al: Neuronal hyperactivity in experimental trigeminal deafferentation. J Neurosurg 1971; 35: 444–452.PubMedCrossRefGoogle Scholar
  26. 26.
    Benabid AL, Henriksen SJ, McGinty JF, et al: Thalamic nucleus ventro-postero-lateralis inhibits nucleus parafascicularis response to noxious stimuli through a non-opioid pathway. Brain Res 1983; 280: 217–231.PubMedCrossRefGoogle Scholar
  27. 27.
    Tsubokawa T, Yamamoto T, Katayama Y, et al: Thalamic relay nucleus stimulation for relief of intractable pain. Clinical results and 3-endorphin immunoreactivity in the cerebrospinal fluid. Pain 1984; 18: 115–126.PubMedCrossRefGoogle Scholar
  28. 28.
    Adams JE, Hosobuchi Y, Fields HL: Stimulation of internal capsule for relief of chronic pain. J Neurosurg 1974; 41: 740–744.PubMedCrossRefGoogle Scholar
  29. 29.
    Nishimoto A, Namba S, Nakao Y, et al: Inhibition of nociceptive neurons by internal capsule stimulation. Appl Neurophysiol 1984; 47: 117–127.PubMedGoogle Scholar
  30. 30.
    Yingling C, Hosobuchi Y: A subcortical correlate of P300 in man. J Electroencephalog Clin Neurophysiol 1984; 59: 72–76.CrossRefGoogle Scholar
  31. 31.
    Hosobuchi Y, Wemmer J: Disulfiram inhibition of development of tolerance to analgesia induced by central gray stimulation in humans. Eur J Pharmacol 1977; 43: 385–387.PubMedCrossRefGoogle Scholar
  32. 32.
    Basbaum AI, Fields HL: Endogenous pain control mechanisms: review and hypothesis. Ann Neurol 1978; 4: 451–462.PubMedCrossRefGoogle Scholar
  33. 33.
    Gal EM, Poczik M, Marshall FD Jr: Hydroxylation of tryptophan to 5-hydroxytryptophan by brain tissue in vivo. Biochem Biophys Res Commun 1963; 12: 39–43.CrossRefGoogle Scholar
  34. 34.
    Fernstrom JD, Wurtman RJ: Control of brain serotonin levels by the diet. Adv Biochem Psychopharmacol 1974; 11: 133–142.PubMedGoogle Scholar
  35. 35.
    Hosobuchi Y, Rossier J, Bloom FE: Oral loading with L-tryptophan may augment the simultaneous release of ACTH and beta-endorphin that accompanies periaqueductal stimulation in humans. Adv Biochem Psychopharmacol 1980; 22: 563–570.PubMedGoogle Scholar
  36. 36.
    Boivie J, Meyerson BA: A correlative anatomical and clinical study of pain suppression by deep brain stimulation. Pain 1982; 13: 113–126.PubMedCrossRefGoogle Scholar
  37. 37.
    Gybels J, Dom R, Cosyns P: Electrical stimulation of the central gray for pain relief in human: autopsy data. Acta Neurochir Suppl 1980; 30: 259–268.CrossRefGoogle Scholar
  38. 38.
    Mayer DJ, Price DD: Central nervous system mechanisms of analgesia. Pain 1976; 2: 379–404.PubMedCrossRefGoogle Scholar
  39. 39.
    Adams JE: Naloxone reversal of analgesia produced by brain stimulation in the human. Pain 1976; 2: 161–166.PubMedCrossRefGoogle Scholar
  40. 40.
    Akil H, Richardson DE, Barchas JD, et al: Appearance of beta-endorphin-like immunoreactivity in human ventricular cerebrospinal fluid upon analgesic electrical stimulation. Proc Natl Acad Sci USA 1978; 75: 5170–5172.PubMedCrossRefGoogle Scholar
  41. 41.
    Akil H, Richardson DE, Hughes J, et al: Enkephalin-like material elevated in ventricular cerebrospinal fluid of pain patients after analgesic focal stimulation. Science 1978; 201: 463–465.PubMedCrossRefGoogle Scholar
  42. 42.
    Hosobuchi Y: Elevation of 13-endorphin-like substances and pro-opiocortin (31K ACTH) by periaqueductal gray stimulation (PAGS) in humans, in Hitchcock ER, Ballantine HT Jr, Meyerson BA (eds): Modern Concepts in Psychiatric Surgery. Amsterdam, Elsevier/North-Holland Biomedical Press, 1979, pp 57–64.Google Scholar
  43. 43.
    Hosobuchi Y, Rossier J, Bloom FE, et al: Stimulation of human periaqueductal gray for pain relief increases immunoreactive 13-endorphin in ventricular fluid. Science 1979; 203: 279–281.PubMedCrossRefGoogle Scholar
  44. 44.
    Dionne RA, Muller GP, Young RF, et al: Contrast medium causes the apparent increase in 3-endorphin levels in human cerebrospinal fluid following brain stimulation. Pain 1984; 20: 313–321.PubMedCrossRefGoogle Scholar
  45. 45.
    Fessier RG, Brown FD, Rachlin JR, et al: Elevated 3-endorphin in cerebrospinal fluid after electrical brain stimulation: artifact of contrast infusion? Science 1984; 224: 1017–1019.CrossRefGoogle Scholar
  46. 46.
    Mayer DJ, Hayes RL: Stimulation-produced analgesia: development of tolerance and cross-tolerance to morphine. Science 1975; 188: 941–943.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Yoshio Hosobuchi
    • 1
  1. 1.Department of Neurological Surgery, Section of Functional and Stereotactic Neurosurgery, School of MedicineUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations