• David S. Strayer
Part of the Infectious agents and pathogenesis book series (IAPA)


The relationship of poxviruses and the immune system is the oldest recorded association of its kind in medical literature. It began in 1798, when Jenner showed that immunity to one orthopoxvirus, cowpox, prevented the develop ment of disease due to a related orthopoxvirus, variola, or smallpox. Initially, the use of cowpox inoculation to prevent smallpox was not universally successful. Other less benign vaccination techniques, including attenuated smallpox, were used. Finally, the introduction of vaccinia virus vaccination for smallpox and its widespread use resulted in the elimination of variola virus from the list of human scourges a decade ago.


Spleen Cell Vaccinia Virus Infected Rabbit Variola Virus Immunologic Dysfunction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dales, S., and B. G. T. Pogo, Biology of Poxviruses ,Springer-Verlag, Vienna (1984).Google Scholar
  2. 2.
    Moss, B., Replication of poxviruses, in: Virology (B. N. Fields, D. M. Knipe, R. M. Chanock, J. L. Melnick, B. Roizman, and R. E. Shope, eds.), pp. 685–703, Raven, New York (1985).Google Scholar
  3. 3.
    Blomquist, M. C., L. T. Hunt, and W. C. Barker, Vaccinia virus 19-kilodalton protein: Relationship to several mammalian proteins, including two growth factors, Proc. Natl. Acad. Sci. USA 81:7363–7367 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    Eppstein, D. A., Y. V. Marsh, A. B. Schreiber, S. R. Newman, G. H. Todaro, and J. J. Nestor, Jr., Epidermal growth factor receptor occupancy inhibits vaccinia virus infection, Nature (Lond.) 318:663–665 (1985).CrossRefGoogle Scholar
  5. 5.
    Chen, H. R., and W. C. Barker, Similarity of vaccinia 28K, V-erb-B and EGF receptors, Nature (Lond.) 316:219–220 (1985).Google Scholar
  6. 6.
    Matthews, R. E. F., Classification and nomenclature of viruses, Intervirology 17:42–46 (1982).CrossRefGoogle Scholar
  7. 7.
    Obom, K., and B. G.-T. Pogo, Characterization of the transformation properties of Shope fibroma virus, Virus Research 9:33–48 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    Fenner, F., Poxviruses, in: Virology (B. N. Fields, D. M. Knipe, R. W. Chanock, J. L. Melnick, B. Roizman, and R. E. Shope, eds.), pp. 661–684, Raven, New York (1985).Google Scholar
  9. 9.
    Freed, E. R., J. D. Richard, and M. R. Escobar, Vaccinia necrosum and its relationship to impaired immunologic responsiveness, Am. J. Med. 52:411–420 (1972).PubMedCrossRefGoogle Scholar
  10. 10.
    Fulginiti, V. A., C. H. Kempe, W. E. Hathaway, D. S. Perlman, O. F. Serber, Jr., J. J. Eller, J. J. Joyner, and A. Robinson, Progressive vaccinia in immunologically deficient indi viduals, Birth Defects 4:129–145 (1968).Google Scholar
  11. 11.
    McLaren, C., H. Cheng, D. L. Spicer, and W. A. F. Tompkins, Lymphocyte and macrophage responses after vaccinia virus infections, Infect. Immun. 14:1014–1021 (1976).PubMedGoogle Scholar
  12. 12.
    Bloom, B. R., A. Senik, G. Stoner, G. Ju, M. Nowakowski, S. Kano, and L. Jimenez, Studies on the interactions between viruses and lymphocytes, Cold Spring Harbor Symp. Quant. Biol. 41:73–83 (1976).CrossRefGoogle Scholar
  13. 13.
    Buchmeier, N. A., S. R. Gee, F. A. Murphy, and W. E. Rawls, Abortive replication of vaccinia virus in activated rabbit macrophages, Infect. Immun. 26:328–338 (1979).PubMedGoogle Scholar
  14. 14.
    Avila, F. R., R. M. Schultz, and W. A. F. Tompkins, Specific macrophage immunity to vaccinia virus: Macrophage-virus interaction, Infect. Immun. 6:9–16 (1972).PubMedGoogle Scholar
  15. 14a.
    Ferrante, A., D. E. O’Keefe, and Y. H. Thong, Induction of suppressor cells in mice following vaccinia virus infection, Med. Microbiol. Immunol. ,168:227– (1980).PubMedCrossRefGoogle Scholar
  16. 15.
    Block, W., C. Upton, and G. McFadden, Tumorigenic poxviruses: Genomic organization of malignant rabbit virus, a recombinant between Shope fibroma virus and myxoma virus, Virology 140:113–124 (1985).PubMedCrossRefGoogle Scholar
  17. 16.
    Strayer, D. S., E. Skaletsky, and S. Sell, S., Strain differences in Shope fibroma virus: An immunolopathologic study, Am. J. Pathol. 116:342–358 (1984).PubMedGoogle Scholar
  18. 17.
    Strayer, D. S., G. Cabirac, S. Sell, and J. L. Leibowitz, Malignant rabbit fibroma virus: Observations on the culture and histopathologic characteristics of a new virus-induced rabbit tumor, J. Natl. Cancer Inst. 71:91–104 (1983).PubMedGoogle Scholar
  19. 18.
    Strayer, D. S., and S. Sell, Immunohistology of malignant rabbit fibroma virus-A comparative study with rabbit myxoma virus, J. Natl. Cancer Inst. 71:105–116 (1983).PubMedGoogle Scholar
  20. 19.
    Strayer, D. S., S. Sell, E. Skaletsky, and J. L. Leibowitz, Immunologic dysfunction during viral oncogenesis. I. Nonspecific immunosuppression caused by malignant rabbit fibroma virus, J. Immunol. 131:2595–2600 (1983).PubMedGoogle Scholar
  21. 20.
    Strayer, D. S., E. Skaletsky, G. F. Cabirac, P. A. Sharp, L. B. Corbeil, S. Sell, and J. L. Leibowitz, Malignant rabbit fibroma virus causes secondary immunosuppression in rabbits, J. Immunol. 130:399–404 (1983).PubMedGoogle Scholar
  22. 21.
    Strayer, D. S., and V. L. Leibowitz, Virus-lymphocyte interactions during the course of immunosuppressive virus infection. J. Gen. Virol. 68:463–471 (1987).PubMedCrossRefGoogle Scholar
  23. 22.
    Kaye, J., S. Porcelli, J. Tite, B.Jones, and C. A. Janeway, Jr., Both a monoclonal antibody and antisera specific for determinants unique to individual cloned helper T cell lines can substitute for antigen and antigen-presenting cells in the activation of T cells, J. Exp. Med. 158:836–856 (1983).PubMedCrossRefGoogle Scholar
  24. 23.
    Strayer, D. S., M. Horowitz, and J. L. Leibowitz, Immunosuppression in viral oncogenesis. III. Effects on virus infection on interleukin-1 and interleukin-2 generation and responsiveness, J. Immunol. 137:3632–3638 (1986).PubMedGoogle Scholar
  25. 24.
    Malek, T. R., G. Ortega, J. P. Jackway, C. Chan, and E. M. Shevach, The murine IL-2 receptor. II. Monoclonal anti-IL-2 receptor antibodies function as specific inhibitors of T cell function in vitro, J. Immunol. 133:1976–1982 (1984).PubMedGoogle Scholar
  26. 25.
    Waldmann, T. A., W.J. Leonard,J. M. Depper, M. Kronke, C. B. Thompson, R. Kozak, and W. C. Greene, Structure, function, and expression of the receptor for interleukin-2 on normal and malignant lymphocytes, Cancer Cells 3:221–226 (1985).Google Scholar
  27. 26.
    Strayer, D. S., K. Korber, and J. Dombrowski, Immunosuppression during viral oncogenesis. IV. Generation of soluble virus-induced immunologic suppressor molecules, J. Immunol. 140:2051–2059 (1988).PubMedGoogle Scholar
  28. 27.
    Strayer, D. S., E. Skaletsky, and J. L. Leibowitz, Effects of inhibition of virus replication on immunosuppression induced by malignant rabbit fibroma virus, Clin. Exp. Immunol 66:25–36 (1986).PubMedGoogle Scholar
  29. 28.
    Strayer, D. S., and J. L. Leibowitz, Reversal of virus-induced immune suppression, /. Immunol. 136:2649–2653 (1986).PubMedGoogle Scholar
  30. 29.
    Strayer, D. S., E. Skaletsky, and J. L. Leibowitz, In vitro growth of two related leporipox-viruses in lymphoid cells, Virology 145:330–334 (1985).PubMedCrossRefGoogle Scholar
  31. 30.
    Skaletsky, E., P. A. Sharp, S. Sell, and D. S. Strayer, Immunologic dysfunction during viral oncogenesis. II. Inhibition of cellular immunity to viral antigens by malignant rabbit fibroma virus, Cell. Immunol. 86:64–74 (1984).PubMedCrossRefGoogle Scholar
  32. 31.
    Strayer, D. S., and J. Dombrowski, Immunosuppression during viral oncogenesis. V. Resistance to virus-induced immunosuppressive factor, J. Immunol. (in press).Google Scholar
  33. 32.
    Yang, H., C. A. Cain, M. C. Woan, and W. A. F. Tompkins, Evaluation of hamster natural cytotoxic cells and vaccinia-induced cytotoxic cells for Thy 1.2 homologue by using a mouse monoclonal anti-Thy-1.2 antibody, J. Immunol. 129:2239–2243 (1982).PubMedGoogle Scholar
  34. 33.
    Yang, H., and W. A. F. Tompkins, Nonspecific cytotoxicity of vaccinia-induced peritoneal exudates in hamsters is mediated by Thy 1.2 homologue-positive cells distinct from NK cells and macrophages, J. Immunol. 131:2545–2550 (1983).PubMedGoogle Scholar
  35. 34.
    Cohen, D. A., R. E. Morris, and H. C. Bubel, Aborative ectromelia virus infection in peritoneal macrophages activated by Corynebacteum parvum, J. Leukocyte Biol. 35:179–192 (1984).PubMedGoogle Scholar
  36. 35.
    Tsuru, S., H. Kitani, M. Seno, M. Abe, Y. Zinnaka, and K. Nomoto, Mechanism of protection during the early phase of a generalized viral infection. I. Contribution of phagocytes to protection against ectromelia virus, J. Gen. Virol. 64:2021–2026 (1983).PubMedCrossRefGoogle Scholar
  37. 36.
    Sakuma, T., T. Suenaga, I. Yoshida, and M. Azuma, Mechanisms of enhanced resistance of Mycobacteum bovis BCG-treated mice to ectromelia virus infection, Infect. Immun. 42:567–573(1983).PubMedGoogle Scholar
  38. 37.
    Tompkins, W. A. F., R. M. Schultz, and G. V. S. V. Rama Rao, Depressed cell-mediated immunity in newborn rabbits bearing fibroma virus-induced tumors, Infect. Immun. 7:613–619 (1973).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • David S. Strayer
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of Texas Health Science CenterHoustonUSA

Personalised recommendations