Advertisement

Immunosuppression by Bovine Herpesvirus 1 and Other Selected Herpesviruses

  • Lorne A. Babiuk
  • M. J. P. Lawman
  • P. Griebel
Part of the Infectious agents and pathogenesis book series (IAPA)

Abstract

Viruses can cause immunosuppression by a variety of mechanisms. Immu nosuppression can occur as a result of direct or indirect effects of the virus on various leukocyte populations(1–5) In the case of direct effects, viruses may infect and destroy the specific leukocytes involved in the development and expression of immunity. In addition, viral components that can be released into the extracellular environment may interact directly with specific cells and affect either accessory or effector cell functions.(6) Indirect effects can be produced by the release of mediators, such as hormones, complement, or prostaglandins. (7–9) Inhibition of mediator release following viral infection can also reduce cellular reactivity and subsequent development of immunity.(10–12) In some instances, immunosuppression is confined to the specific antigen(s) causing the suppression, whereas in other instances there is generalized immunosuppression to a wide variety of antigens.(3,13) Thus, it is clearly evident that the phenomenon of virus-induced immunosuppression can occur via a wide variety of different pathways, and in many cases a combination of factors aDDears to act in concert.

Keywords

Respiratory Syncytial Virus Alveolar Macrophage Pseudorabies Virus Bovine Herpesvirus Equine Herpesvirus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramson, J. S., G. S. Gibrik, E. L. Mills, and P. Quie, Polymorphonuclear leukocyte dysfunction during influenza virus infection in cinchillas, J. Infect. Dis. 143:836–846 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    Astry, G. L. and G. J. Jakab, Influenza virus induced immune complexes suppress macrophage phagocytosis, J. Virol. 50:287–292 (1984).PubMedGoogle Scholar
  3. 3.
    Wainberg, M. A., S. Vydelingum, and R. G. Margolese, Viral inhibition of lymphocyte mitogenesis: Interference with synthesis and functionally active T cell growth factor (TCGF) activity and reversal of inhibition by the addition of the same, J. Immunol. 130:2372–2378 (1983).PubMedGoogle Scholar
  4. 4.
    Casali, P., G. P. Price, and M. B. A. Oldstone, Viruses disrupt functions of human lymphocytes: Effects of measles virus and influenza virus on lymphocyte-mediated kill ing and antibody production, J. Exp. Med. 159:1322–1377 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    Forman, A. J., and L. A. Babiuk, Effect of infectious bovine rhinotracheitis virus infection on bovine alveolar macrophage function, Infect. Immun. 35:1041 -1047 (1982).PubMedGoogle Scholar
  6. 6.
    Jakab, G. J., Viral bacterial interactions in respiratory tract infections: A review of the mechanisms of virus-induced suppression of pulmonary antibacterial defenses, in: Bovine Respiratory Disease, A Symposium (R. W. Loon, ed.), pp. 223–286, Texas A & M University Press, College Station, Texas (1984).Google Scholar
  7. 7.
    Crabtree, G. R., S. Gillis, K. A. Smith, and A. Munck, Mechanisms of glucocorticoid-induced immunosuppression: Inhibitory effects on expression of Fc receptors and production of T cell growth factors, J. Steroid Biochem. 12:445–449 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    Egwang, T. G., and A. D. Befus, The role of complement in the induction and regulation of the immune response, Immunology 51:207–224 (1984).PubMedGoogle Scholar
  9. 9.
    Walker, C., F. Kristensen, F. Bettens, and A. L. deWeck, Lymphokine regulation of activated (Gl) lymphocytes. I. Prostaglandin E2-induced inhibition of interleukin 2 production, J. Immunol. 130:1770–1773 (1983).Google Scholar
  10. 10.
    Jaffe, M. I., and A. R. Rabson, Defective helper factor (LMF) production in patients with acute measles infection, Clin. Immunol. Immunopathol. 20:215–223 (1981).CrossRefGoogle Scholar
  11. 11.
    McGuire, R. L., and L. A. Babiuk, Evidence for defective neutrophil functions in calves exposed to infectious bovine rhinotracheitis, Vet. Immunol. Immunopathol. 5:259–271 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    Schorlemmer, H. U., and A. C. Allison, Effects of activated complement components on enzyme secretion by macrophages, Immunology 31:781–788 (1976).PubMedGoogle Scholar
  13. 13.
    Von Pirquet, C. E., Das verhalten der kautanen tuberculinreaktion wahrend der masern, Dtsch. Med. Wopchenschi Wochenschrl. 34:1297–1300 (1908).CrossRefGoogle Scholar
  14. 14.
    Gibbs, E. P. J. and M. M. Reyweyemamu, Bovine herpesvirus. I. Bovine herpesvirus-1, Vet. Bull. 47:317–323 (1977).Google Scholar
  15. 15.
    Homan, E. J., and B. C. Easterday, Isolation of bovine herpesvirus-1 from trigeminal ganglia of clinically normal cattle, Am. J. Vet. Res. 41:1212–1216 (1980).PubMedGoogle Scholar
  16. 16.
    Baxter, G. M., Neonatal meningoencephalitis associated with IBR virus, Bovine Pract. 19:41–44 (1984).Google Scholar
  17. 17.
    Hill, B. D., M. W. M. Hill, Y. S. Chung, and R. J. Whittle, Meningoencephalitis in calves due to bovine herpesvirus type 1 infection, Aust. Vet. J. 61:242–243 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    Babiuk, L. A., R. C. Wardley, and B. T. Rouse, Defense mechanisms against bovine herpesviruses: Relationship of virus-host cell events to susceptibility to antibody-complement lysis, Infect. Immun. 12:958–963 (1975).PubMedGoogle Scholar
  19. 19.
    Rouse, B. T., and L. A. Babiuk, Host defence mechanisms against infectious bovine rhinotracheitis virus. I. In vitro stimulation of sensitized lymphocytes by virus antigen, Infect. Immun. 10:681–687 (1975).Google Scholar
  20. 20.
    Rouse, B. T. and L. A. Babiuk, Host defence mechanisms against infectious bovine rhinotracheitis virus. II. Inhibition of viral plaque formation by immune peripheral blood lymphocytes, Cell. Immunol. 17:43–46 (1975).PubMedCrossRefGoogle Scholar
  21. 21.
    Rouse, B. T., and L. A. Babiuk, Host defence mechanisms against infectious bovine rhinotracheitis virus. III. Isolation and immunological activities of bovine T lymphocytes, J. Immunol. 113:1391–1398 (1975).Google Scholar
  22. 22.
    Rouse, B. T., and L. A. Babiuk, The direct antiviral cytotoxicity by bovine lymphocytes is not restricted by genetic incompatibility of lymphocytes and target cells, /. Immunol. 118:618–624 (1977).Google Scholar
  23. 23.
    Wardley, R. C., B. T. Rouse, and L. A. Babiuk, Antibody dependent cytotoxicity mediated by neutrophils as a possible mechanism of antiviral defense, J. Reticuloendothel. Soc. 19:323–332 (1976).PubMedGoogle Scholar
  24. 24.
    Rouse, B. T., L. A. Babiuk, and Y. Fujimiya, Enhancement of antibody dependent cell cytotoxicity of herpesvirus infected cells by complement, Infect. Immun. 18:660–665 (1977).PubMedGoogle Scholar
  25. 25.
    Rouse, B. T., A. S. Grewal, and L. A. Babiuk, Complement enhances antiviral antibody dependent cell cytotoxicity, Nature (Lond.) 226:456–458 (1977).CrossRefGoogle Scholar
  26. 26.
    Grewal, A. S., B. T. Rouse, and L. A. Babiuk, Mechanisms of recovery from viral infections: Destruction of infected cells by neutrophils and complement, J. Immunol. 124:312–319 (1980).PubMedGoogle Scholar
  27. 27.
    Grewal, A. S., and L. A. Babiuk, Complement dependent polymorphonuclear neu trophil mediated cytotoxicity of herpesvirus infected cells: Possible mechanisms of cytotoxicity, Immunology 40:151 -161 (1980).PubMedGoogle Scholar
  28. 28.
    Babiuk, L. A., and B. T. Rouse, Interaction between effector cell activity and lympho-kines: Implications for recovery from herpesvirus infections, Int. Arch. Allergy App. Immunol. 57:62–73 (1978).CrossRefGoogle Scholar
  29. 29.
    Babiuk, L. A., H. Bielefeldt Ohmann, G. Gifford, C. Czarniecki, V. T. Scialli, and E. B. Hamilton, Effect of bovine-1 interferon on bovine herpesvirus-1 induced respiratory disease, J. Gen. Virol. 66:2838–2894 (1985).CrossRefGoogle Scholar
  30. 30.
    Bielefeldt Ohmann, H., and L. A. Babiuk, Viral bacterial pneumonia in calves: Effect of bovine herpesvirus-1 on immunological functions, J. Infect. Dis. 151:937–947 (1985).CrossRefGoogle Scholar
  31. 31.
    Babiuk, L. A., and B. T. Rouse, Immune interferon production by lymphoid cells: Role in the inhibition of herpesvirus, Infect. Immun. 13:1567–1578 (1976).PubMedGoogle Scholar
  32. 32.
    Splitter, G. A., L. Eskra, M. Miller-Edge, and J. L. Splitter, Bovine herpesvirus: Interactions between animal and virus, CRC Comparative Pathobiology of Viral Diseases ,Vol. 1, pp. 57-88 (R. G. Olsen, S. Krakawka, and J. R. Blakesley, eds.), CRC Press, Boca Raton, Florida (1984).Google Scholar
  33. 33.
    Gershon, R. K., and K. Kondo, Cell interactions in the induction of tolerance: The role of thymic lymphocytes, Immunology 18:723–737 (1970).PubMedGoogle Scholar
  34. 34.
    Rich, R. R., and C. W. Pierce, Biological expressions of lymphocyte activation: Effects of phytomytogens on antibody synthesis in vitro, J. Exp. Med. 137:205–223 (1973).PubMedCrossRefGoogle Scholar
  35. 35.
    Tada, T., and T. Takemori, Selective roles of thymus derived lymphocytes in the antibody response. I. Differential suppressive effect of carrier-primed T cells on hapten-specifíc IgM and IgG antibody responses, J. Exp. Med. 140:239–252 (1974).PubMedCrossRefGoogle Scholar
  36. 36.
    Klein, J., Immunology the Science of Self-Nonself Discrimination ,Wiley, New York (1982).Google Scholar
  37. 37.
    Herbert, A. G., and J. D. Watson, T-cell ontogeny: The role of a stimulator suppressor cell, Immunol. Today 7:72–76 (1986).CrossRefGoogle Scholar
  38. 38.
    Bensussan, A., O. Acuto, R. E. Hussey, C. Milanese, and E. L. Reinherz, T3-Ti receptor triggering of T8 + suppressor T cells leads to immunoresponsiveness to interleukin-2, Nature (Lond) 311:565–567 (1984).CrossRefGoogle Scholar
  39. 39.
    Kasakura, S., M. Taguchi, Y. Watanabe, T. Okubo, T. Murachi, H. Uchino, and M. Hanaoka, Suppressor cell induction factor: A new mediator released by stimulated human lymphocytes and distinct from previously described lymphokines, J. Immunol. 130:2720–2726 (1983).PubMedGoogle Scholar
  40. 40.
    Horohov, D. W., J. H. Wyckoff, R. N. Moore, and B. T. Rouse, Regulation of herpesvirus simplex virus-specific cell-mediated immunity by a specific suppressor factor, J. Virol. 58:331–338 (1986).PubMedGoogle Scholar
  41. 41.
    Bielefeldt Ohmann, H., L. G. Filion, and L. A. Babiuk, Bovine monocytes and macrophages: An accessory role in suppressor-cell generation by Con A and in lectin-in-duced proliferation, Immunology 50:189–197 (1983).Google Scholar
  42. 42.
    Filion, L. G., R. L. McGuire, and L. A. Babiuk, Non-specific suppressive effect of bovine herpesvirus-1 on bovine leukocyte functions, Infect. Immun. 42:106–112 (1983).PubMedGoogle Scholar
  43. 43.
    Ceredig, R., and G. Corradin, High antigen concentration inhibits T cell proliferationbut not interleukin 2 production: Examination of limiting dilution microcultures and T cell clones, Eur. J. Immunol. 16:30–34 (1986).CrossRefGoogle Scholar
  44. 44.
    Miller-Edge, M. A., T-cell mediated immune responses to bovine herpesvirus 1: The role of interleukin-2, in: Characterization of the Bovine Interferon Immune System and the Genes Regulating Expression of Immunity with Particular Reference to Their Role in Disease Resistance: A Symposium (W. C. Davis, J. N. Shelton, and C. W. Weems, eds.), pp. 99–118, Washington State University Press, Pullman, Washington (1985).Google Scholar
  45. 45.
    Rubin, L. A., C. C. Kurman, M. E. Fritz, W. E. Biddison, B. Boutin, R. Yarchoan, and D. L. Nelson, Soluble interleukin 2 receptors are released from activated human lymphoid cells in vitro, J. Immunol. 135:3172–3177 (1985).PubMedGoogle Scholar
  46. 46.
    Splitter, G. A., and L. Eskra, Bovine T lymphocyte response to bovine herpesvirus-1: Cell phenotypes, viral recognition and acid-labile interferon production, Vet. Immunol. Immunopathol. 11:235–250 (1986).Google Scholar
  47. 47.
    Woodruff, J. F., and J. J. Woodruff, The effect of viral infections on the function of the immune system in: Viral Immunology and Immunopathology (A. L. Notkins, ed.), pp. 393–418, Academic, New York (1975).Google Scholar
  48. 48.
    Babiuk, L. A. ,and H. Bielefeldt Ohmann, Bovine herpesvirus-1 (BHV-1) infection in cattle as a model for viral induced immunosuppression, in: Viral Mechanisms of Immu nosuppression (M. Kende, J. Gainer, and H. Chirigos, eds.), pp. 99–114, Liss, New York (1985).Google Scholar
  49. 49.
    Braun, R. W., H. K. Teute, H. Kirchner, and K. Munk, Replication of herpes simplex virus in human T lymphocytes: Characterization of the viral target cell, J. Immunol. 132:914–919 (1984).PubMedGoogle Scholar
  50. 50.
    Isfort, R. J., R. A. Stringer, H. J. Kung, and L. F. Velicer, Synthesis, processing and secretion of Marek’s disease herpesvirus A antigen glycoprotein, J. Virol. 57:464–474 (1986).PubMedGoogle Scholar
  51. 51.
    Maes, R. K., S. L. Fritsch, L. L. Herr, and P. A. Rota, Immunogenic proteins of feline rhinotracheitis virus, J. Virol. 51:259–262 (1984).PubMedGoogle Scholar
  52. 52.
    Okuno, T., K. Yamanishi, K. Shiraki, and M. Takahashi, Synthesis and processing of glycoproteins of varicella-zoster virus (VZV) as studies with monoclonal antibodies to VZV antigens, Virology 129:357–368 (1983).PubMedCrossRefGoogle Scholar
  53. 53.
    Rea, T. J., J. G. Timmins, G. W. Lony, and L. E. Post, Mapping and sequence of the gene for the pseudorabies virus glycoprotein which accumulates in the medium of infected cells, J. Virol. 54:21–29 (1985).PubMedGoogle Scholar
  54. 54.
    Letchworth, G. J. III, and L. E. Carmichael, The effect of temperature on production and function of bovine interferons, Arch. Virol. 82:211–221 (1982).CrossRefGoogle Scholar
  55. 55.
    Aune, T. M., and C. W. Pierce, Identification and initial characterization of a nonspecific suppressor factor produced by soluble immune response suppressor-treated macrophages, J. Immunol. 127:1828–1833 (1981).PubMedGoogle Scholar
  56. 56.
    Schnaper, H. W., Identification and initial characterization of concanavalin A-and interferon-induced human suppressor factors: Evidence for a human equivalent of murine soluble immune response suppressor (SIRS), J. Immunol. 132:2429–2436 (1984).PubMedGoogle Scholar
  57. 57.
    Lipscomb, M. F., G. B. Toews, G. R. Lyons, and J. W. Uhr, Antigen presentation by guinea pig alveolar macrophages, J. Immunol. 126:286–292 (1981).PubMedGoogle Scholar
  58. 58.
    Towes, G. B., W. C. Vial, and M. M. Dunn, The accessory cell function of human alveolar macrophages in specific T cell proliferation, J. Immunol. 132:181 -186 (1984).Google Scholar
  59. 59.
    Slauson, D. O., The mediation of pulmonary inflammatory injury, Adv. Vet. Sci. Compar. Med. 26:99–120 (1982).Google Scholar
  60. 60.
    Bielefeldt Ohmann, H., and L. A. Babiuk, Alteration of some leukocyte functions following in vivo and in vitro exposure to recombinant bovine alpha-and gamma-interferon, J. Interferon Res. 6:123–136 (1986).CrossRefGoogle Scholar
  61. 61.
    Holt, P. G., Alveolar macrophages. II. Inhibition of lymphocyte proliferation by peripheral macrophages from rat lung, Immunology 37:429–436 (1979).PubMedGoogle Scholar
  62. 62.
    Holt, P. G., Alveolar macrophages. III. Studies on the mechanism of inhibition of T-cell proliferation, Immunology 37:437–445 (1979).PubMedGoogle Scholar
  63. 63.
    Yeager, H., Jr., J. A. Sweeney, H. B. Herscowitz, I. S. Barsaum, and E. Kagan, Modula tion of mitogen induced proliferation of autologous peripheral blood lymphocytes by human alveolar macrophages, Infect Immun. 38:260–266 (1982).PubMedGoogle Scholar
  64. 64.
    Lawrence, E. C., G. J. Theodore, and R. R. Martin, Modulation of pokeweed mitogen induced immunoglobulin secretion by human bronchoalveolar cells, Am. Rev. Respir. Dis. 126:248–252 (1982).PubMedGoogle Scholar
  65. 65.
    Twomey, J. J., A. Laughter, and M. F. Brown, A comparison of the regulatory effects of human monocytes, pulmonary alveolar macrophages (PAMs) and spleen macrophages upon lymphocyte responses, Clin. Exp. Immunol. 52:449–545 (1983).Google Scholar
  66. 66.
    Rinehart, J. J., M. Orser, and M. E. Kaplan, Human monocyte and macrophage modulation of lymphocyte proliferation, Cell. Immunol. 44:131–143 (1979).PubMedCrossRefGoogle Scholar
  67. 67.
    Rice, L., A. H. Laughter, and J. J. Twomey, Three suppressor systems in human blood that modulate lymphoproliferation, J. Immunol. 122:991–996 (1979).PubMedGoogle Scholar
  68. 68.
    Liu, M. C., Human lung macrophages enhance and inhibit lymphocyte proliferation, J. Immunol. 132:2895–2904 (1984).PubMedGoogle Scholar
  69. 69.
    Bendixen, P. H., P. E. Shewen, and B. N. Wilkie, The influence of bovine alveolar macrophages on the blastogenic response of peripheral blood mononuclear cells, in: The Ruminant Immune System (J. E. Butler, ed.), p. 814, Plenum, New York (1981).Google Scholar
  70. 70.
    Goldyne, M. E., and J. D. Stobo, Immunoregulatory role of prostaglandins and related lipids, CRC Crit. Rev. Immunol. 2:189–242 (1981).Google Scholar
  71. 71.
    Hasler, F., H. G. Bluestein, N. J. Zvaifler, and L. B. Epstein, Analysis of the defects responsible for impaired regulation of EBV-induced B cell proliferation by rheumatoid arthritis lymphocytes. II. Role of monocytes and increased sensitivity of rheumatoid arthritis lymphocytes to prostaglandin E, Eur. J. Immun. 131:768–774 (1983).Google Scholar
  72. 72.
    Kunkel, S. L., D. A. Cambell, S. W. Chensue, and G. I. Higashi, Species-dependent regulation of monocyte-macrophage Ia antigen expression and antigen presentation by prostaglandin E, Cell. Immunol. 97:140–152 (1986).PubMedCrossRefGoogle Scholar
  73. 73.
    Dinarello, C. A., Human interleukin-1. The importance of its multiple activities for immunoregulation, in: Sixth International Congress on Immunology (B. Cinader and R. G. Miller, eds.), p. 41, Academic Press, Toronto (1986).Google Scholar
  74. 74.
    Albrightson, G. R., N. L. Baenziger, and P. Needleman, Exaggerated human vascular cell prostaglandin biosynthesis mediated by monocytes: Role of monokines and interleukin 1, J. Immunol. 135:1872–1877 (1985).PubMedGoogle Scholar
  75. 75.
    Chouaib, S., L. Chatenoud, D. Klatzmann, and D. Fradelizi, The mechanisms of inhibition of human IL-2 production II. PGE-2 induction of suppressor T lymphocytes, J. Immunol. 132:1851–1857 (1984).PubMedGoogle Scholar
  76. 76.
    Oppenheim, J. J., E. J. Kovacs, K. Matsushima, and S. K. Durum, There is more than one interleukin 1, Immunol. Today 7:45–56 (1986).CrossRefGoogle Scholar
  77. 77.
    Roberts, N. J., A. H. Prill, and T. N. Mann, Interleukin 1 and interleukin 1 inhibitor production by human macrophages exposed to influenza virus or respiratory syncytial virus. Respiratory syncytial virus is a potent inducer of inhibitory activity, J. Exp. Med. 163:511–520 (1986).PubMedCrossRefGoogle Scholar
  78. 78.
    Weitzman, S. A., and T. P. Stossel, Mutation caused by human phagocytes, Science 212:546–547 (1981).PubMedCrossRefGoogle Scholar
  79. 79.
    Carson, D. A., S. Seto, and D. B. Wasson, Lymphocyte dysfunction after DNA damage by toxic oxygen species: A model of immunodeficiency, J. Exp. Med. 163:746–752 (1986).PubMedCrossRefGoogle Scholar
  80. 80.
    Rodrick, M. L., I. B. Lamster, S. T. Sonis, S. G. Pender, A. B. Kolodkin, J. E. Fitzgerald, and R. E. Wilson, Effect of supernatants of polymorphonuclear neutrophils recruited by different inflammatory substances on mitogen responses of lymphocytes, Inflammation 6:1–11 (1982).PubMedCrossRefGoogle Scholar
  81. 81.
    Yoshinaga, M., K. Nishime, S. Nakamura, and F. Goto, A PMN-derived factor that enhances DNA-synthesis in PHA or antigen-stimulated lymphocytes, J. Immunol. 124:94–99 (1980).PubMedGoogle Scholar
  82. 82.
    Hsu, C. C., M. B. Wu, and J. Rivera-Arcilla, Inhibition of lymphocyte reactivity in vitro by autologous polymorphonuclear cells (PMN), Cell Immunol 48:288–295 (1979).PubMedCrossRefGoogle Scholar
  83. 83.
    Starke, I. D., Granulocyte content and titrated thymidine uptake of mononuclear cells, preparations from patients with ovarian cancer, Clin. Oncol. 8:243–249 (1982).Google Scholar
  84. 84.
    Judson, D. G., and J. B. Dixon, Depression of lymphocyte reactivity by granulocytes in equine whole blood culture, Vet. Immunol. Immunopathol. 8:289–295 (1985).PubMedCrossRefGoogle Scholar
  85. 85.
    Tiku, K., M. L. Tiku, S. Liu, and J. L. Skosey, Normal human neutrophils are a source of a specific interleukin 1 inhibitor, J. Immunol. 136:3686–3692 (1986).PubMedGoogle Scholar
  86. 86.
    Blecha, F., and P. E. Baker, Effect of Cortisol in vitro and in vivo on production of bovine interleukin 2, Am. J. Vet. Res. 47:841–845 (1986).PubMedGoogle Scholar
  87. 87.
    Emery, D. L., J. H. Duffy, and P. R. Wood, An analysis of cellular proliferation and production of lymphokines and specific antibody in vitro by leukocytes from immunized cattle, in: First International Veterinary Immunology Symposium (B. Wilkie, P. E. Shewan, K. Nielson, J. R. Duncan, and B. W. Stemshorn, eds.), p. 57, University of Guelph Press, Guelph, Ontario (1986).Google Scholar
  88. 88.
    Blalock, J. E., Production and action of lymphocyte-derived neuroendocrine peptide hormones: A summary, in: Sixth International Congress on Immunology (B. Cinader and R. G. Miller, eds.), p. 48, Academic Press, Toronto (1986).Google Scholar
  89. 89.
    Blecha, F., and H. C. Minocha, Suppressed lymphocyte blastogenic responses and en hanced in vitro growth of bovine rhinotracheitis virus in stressed feeder calves, Am. J. Vet. Res. 44:2145–2148 (1983).PubMedGoogle Scholar
  90. 90.
    Payan, D. G., and E. J. Goetzl, Modulation of lymphocyte function by sensory neuropeptides, in: Neuromodulation of Immunity and Hypersensitivity, J. Immunol. 135(suppl.):783–786 (1985).Google Scholar
  91. 91.
    Payan, D. G., J. D. Levine, and E. J. Goetzl, Modulation of immunity and hypersensitivity by sensory neuropeptides, J. Immunol. 132:1601–1604 (1984).PubMedGoogle Scholar
  92. 92.
    Smith, E. M., D. Harbour-McMenamin, and E. J. Blalock, Lymphocyte production of endorphins and endorphin-mediated immunoregulatory activity, in: Neuromodulation of Immunity and Hypersensitivity, J. Immunol. 135(suppl.):779–782 (1985).Google Scholar
  93. 93.
    Johnson, H. M.. E. M. Smith, B. A. Torres, and J. E. Blalock, Neuroendocrine hormone regulation of an in vitro antibody production, Proc. Natl. Acad. Sci. USA 79:4171–4174 (1982).PubMedCrossRefGoogle Scholar
  94. 94.
    Brock, J. H., and M. DeSousa, Immunoregulation by iron-binding proteins, Immunol. Today 7:30–31 (1986).CrossRefGoogle Scholar
  95. 95.
    Lum, J. F., A. J. Infante, D. M. Makker, F. Yang, and B. H. Bowman, Transferrin synthesis by inducer T lymphocytes, J. Clin. Invest. 77:841–850 (1986).PubMedCrossRefGoogle Scholar
  96. 96.
    Matzner, Y., C. Hershko, A. Polliack, A. M. Konijn, and G. Izak, Suppressive effect of ferritin on in vitro lymphocyte function, Br. J. Haematol. 42:345–353 (1979).PubMedCrossRefGoogle Scholar
  97. 97.
    Gleeson, L. J., and L. Coggins, Equine herpesvirus type 2: Cell-virus relationship during persistent cell associated viremia, Am. J. Vet. Res. 46:19–23 (1986).Google Scholar
  98. 98.
    Dutta, S. K., and A. C. Myrup, Infectious center assay of intracellular virus and infective virus titer for equine mononuclear cells infected in vivo and in vitro with equine herpesvirus, Can. J. Compar. Med. 47:64–69 (1983).Google Scholar
  99. 99.
    Coignoul, F. L., T. A. Bertram, and N. F. Cheville, Functional and ultrastructural changes in neutrophils from mares and foals experimentally inoculated with a respiratory tract strain of equine herpesvirus-1, Am. J. Vet. Res. 45:1972–1975 (1984).PubMedGoogle Scholar
  100. 100.
    Dutta, S. K., Myrup, A. and M. K. Bumgardner, Lymphocyte responses to virus and mitogen in ponies during experimental infection with equine herpesvirus-1, Am. J. Vet. Res. 41:2066–2068 (1980).PubMedGoogle Scholar
  101. 101.
    Scott, J. C., S. K. Dutta, and A. C. Myrup, In vivo harboring of equine herpesvirus-1 in leukocyte populations and subpopulations and their quantitation from experimentally infected ponies. Am. J. Vet. Res. 44:1344–1348 (1983).Google Scholar
  102. 102.
    Wittman, G., V. Ohlinger, and H. J. Rziha, Occurrence and reactivation of latent Aujesky’s disease virus following challenge in previously vaccinated pigs, Arch. Virol. 75:29–41 (1983).CrossRefGoogle Scholar
  103. 103.
    Narita, M., S. Inui, and Y. Shimizu, Tonsillar changes in pigs given pseudorabies (Aujesky’s disease) virus. Am. J. Vet. Res. 45:247–251 (1984).Google Scholar
  104. 104.
    Smid, B., L. Valick, and A. Sabol, Morphogenesis of Aujesky’s disease virus in pig lung macrophages, Acta Vet. Brno 50:79–87 (1981).CrossRefGoogle Scholar
  105. 105.
    Jakowski, R. M., T. N. Fredrickson, T. W. Chomiak, and R. E. Luginbuhl, Hema topoietic destruction in Marek’s disease, Avian Dis. 14:374–383 (1970).PubMedCrossRefGoogle Scholar
  106. 106.
    Witter, R. L., J. M. Sharma, and A. M. Fadley, Pathogenicity of variant Marek’s disease virus isolates in vaccinated and unvaccinated chickens, Avian Dis. 24:210–219 (1980).CrossRefGoogle Scholar
  107. 107.
    Longenecker, B. M., F. Pazderka, J. S. Gavora, J. L. Spencer, E. A. Stephens, and R. L. Witter, Role of major histocompatability complex in resistance to Marek’s disease: Restriction of growth of JMV-MD tumor cells in genetically resistant birds, Adv. Exp. Med. Biol. 88:287–296 (1977).PubMedGoogle Scholar
  108. 108.
    Briles, W. E., R. W. Briles, W. H. McGibbon, and H. A. Stone, Identification of B alloalleles associated with resistance to Marek’s disease, pp. 395-416, in: Resistance and Immunity to Marek’s Disease (P. M. Biggs, ed.), CEC Publication Eur 6470, Luxembourg (1982).Google Scholar
  109. 109.
    Calnek, B. W., J. C. Carlisle, J. Fabricant, K. K. Murthy, and K. A. Schat, Comparative pathogenesis studies with oncogenic and nononcogenic Marek’s disease virus and turkey herpesvirus, Am. J. Vet. Res. 40:541–548 (1979).PubMedGoogle Scholar
  110. 110.
    Schierman, L. W.. G. A. Theis, and R. A. McBride, Preservation of a T cell mediated immune response in Marek’s disease virus-infected chickens by vaccination with a related virus, J. Immunol 116:1497–1507 (1976).PubMedGoogle Scholar
  111. 111.
    Powell, P. C., In vitro stimulation of blood lymphocytes by phytohemagglutinin during the development of Marek’s disease, Avian Pathol. 9:471–485 (1980).PubMedCrossRefGoogle Scholar
  112. 112.
    Shek, W. R., B. W. Calnek, K. A. Schat, and C. H. Chen, Characterization of Marek’s disease virus-infected lymphocytes: Discrimination between cytolytically and latently infected cells, J. Natl. Cancer Inst. 70:485–491 (1983).PubMedGoogle Scholar
  113. 113.
    Lee, L. F., J. M. Sharma, K. Nazerian, and R. L. Witter, Suppression and enhancement of mitogen response in chickens infected with Marek’s disease virus and herpesvirus of turkeys, Infect. Immun. 21:474–479 (1978).PubMedGoogle Scholar
  114. 114.
    Schierman, L. W., G. A. Theis, and R. A. McBride, Preservation of a T cell mediated immune response in Marek’s disease virus-infected chickens by vaccination with a related virus, J. Immunol. 116:1497–1499 (1976).PubMedGoogle Scholar
  115. 115.
    Wainberg, M. A., B. Beiss, and E. Israel, Viral-mediated abrogation of chicken lymphocyte responsiveness to mitogenic stimulus, Avian Dis. 24:580–591 (1980).PubMedCrossRefGoogle Scholar
  116. 116.
    Lee, L. F., J. M. Sharma, K. Nazerian, and R. C. Witter, Suppression of mitogen induced proliferation of normal spleen cells by macrophages from chickens inoculated with Marek’s disease virus, J. Immunol. 120:1554–1559 (1978).PubMedGoogle Scholar
  117. 117.
    Theis, G. A., Subpopulations of suppressor cells in chickens infected with cells of a transplantable lymphoblastic leukemia, Infect. Immun. 34:526–534 (1981).PubMedGoogle Scholar
  118. 118.
    Theis, G. A., Effect of lymphocytes from Marek’s disease infected chickens on mitogenic responses of syngeneic normal chicken spleen cells, J. Immunol. 118:887–894 (1977).PubMedGoogle Scholar
  119. 119.
    Calnek, B. W., K. J. Fahey, and T. J. Bagust, In vitro infection studies with infectious laryngotracheitis virus, Avian Dis. 30:327–336 (1986).PubMedCrossRefGoogle Scholar
  120. 120.
    Chang, P. W., F. Sculco, and V. J. Yates, An in vivo and in vitro study of infectious laryngotracheitis virus in chicken leukocytes, Avian Dis. 21:492–500 (1977).PubMedCrossRefGoogle Scholar
  121. 121.
    Bagust, T. J., B. W. Calnek, and K. J. Fahey, Gallid-1 herpesvirus infection in the chicken. 3. Reinvestigation of the pathogenesis of infectious laryngotracheitis in acute and early post-acute disease, Avian Dis. 30:179–190 (1986).PubMedCrossRefGoogle Scholar
  122. 122.
    Stevens, J. G., and M. L. Cook, Restriction of herpes simplex virus by macrophages: An analysis of cell-virus interaction, J. Exp. Med. 13:19–38 (1971).CrossRefGoogle Scholar
  123. 123.
    Cross, S. S., J. C. Parker, W. C. Rowe, and M. L. Robbins, Biology of mouse thymic virus, a herpesvirus of mice and the antigenic relationship to mouse cytomegalovirus, Infect. Immun. 26:1186–1195 (1979).Google Scholar
  124. 124.
    Cohen, P. L., S. S. Cross, and D. E. Mosier, Immunologic effects of neonatal infection with mouse thymic virus, J. Immunol. 115:706–710 (1975).PubMedGoogle Scholar
  125. 125.
    Griffith, B. P. and G. D. Hsiung, Persistence and expression of herpesvirus in guinea pig B and T cells, Proc. Soc. Exp. Biol. Med. 162:202–206 (1978).Google Scholar
  126. 126.
    Dowler, K. W., S. McCormick, J. A. Armstrong, and G. D. Hsiung, Lymphoproliferative changes induced by infection with a lymphotropic herpesvirus of guinea pigs, J. Infect. Dis. 150:105–111 (1984).PubMedCrossRefGoogle Scholar
  127. 127.
    Tenser, R. B., and G. D. Hsiung, Infection of thymus cells in vivo and in vitro with a guinea pig herpes-like virus and the effect of antibody on virus replication in organ culture, J. Immunol. 110:552–560 (1973).PubMedGoogle Scholar
  128. 128.
    Gonzalez-Serva, A., and G. D. Hsiung, Expression of herpesvirus in adherent cells from bone marrow of latently infected guinea pigs, Am. J. Pathol. 9:483–496 (1978).Google Scholar
  129. 129.
    Kramp, W. J. ,P. Medveczky, C. Mulder, H. C. Hinze, and J. L. Sullivan, Herpes sylvilagus infects both B and T lymphocytes in vivo, J. Virol. 56:60–65 (1985).Google Scholar
  130. 130.
    Arbeit, R. D., J. A. Zaia, M. A. Valerio, and M. J. Levin, Infection of human peripheral blood mononuclear cells by varicella zoster virus, Intervirology 18:56–65 (1982).PubMedCrossRefGoogle Scholar
  131. 131.
    Ozaki, T., T. Ichikawa, Y. Matsui, H. Konda, T. Nagain, Y. Asano, K. Yamanishi, and M. Takahashi, Lymphocyte-associated viremia in varicella, J. Med. Virol. 19:249–253 (1986).PubMedCrossRefGoogle Scholar
  132. 132.
    Twomey, J. J., F. Gyorkey, and S. M. Norris, The monocyte disorder with herpes zoster, /. Exp. Clin. Med. 83:768–777 (1974).Google Scholar
  133. 133.
    Arneborn, P. and G. Biberfeld, T lymphocyte subpopulation in relation to immunosup pression in measles and varicella, Infect. Immun. 39:29–37 (1983).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Lorne A. Babiuk
    • 1
  • M. J. P. Lawman
    • 1
  • P. Griebel
    • 1
  1. 1.Department of Veterinary Microbiology and Veterinary Infectious Disease OrganizationUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations