Herpes Simplex

  • Laure Aurelian
Part of the Infectious agents and pathogenesis book series (IAPA)


The term herpes has been in the medical vocabulary for at least 25 centuries. In the Hippocratic corpus, it was used to describe an assortment of cutaneous lesions, including clinical descriptions compatible with herpes simplex and herpes zoster lesions. During the early nineteenth century, six clinical entities, including facial and genital herpes, were delineated. However, they were not considered communicable, possibly because of the idiosyncratic appearance of symptoms in conjunction with disparate well-defined febrile illnesses.(1) In the years since then it has been established that two serotypes of herpes simplex virus (HSV) infect humans: type 1 (HSV-1), which primarily causes oropharyn geal lesions, and type 2 (HSV-2), which primarily causes genital disease. Characteristic of the pathogenesis of the disease, is the ability of the virus to persist in the host indefinitely, becoming periodically reactivated to cause recurrent cutaneous disease. This chapter reviews available information on HSV-induced immunity and considers the premise that immunomodulation plays a critical role in disease pathogenesis.


Herpes Simplex Virus Herpes Simplex Virus Type Mononuclear Phagocyte Genital Herpes Herpes Simplex Virus Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. S. L. Beswick, The origin and the use of the word herpes, Med. Hist. 6:214–232, (1962).PubMedGoogle Scholar
  2. 2.
    Spear, P. G., and B. Roizman, Herpes simplex viruses. In DNA Tumor Viruses J. Tooze (Ed.) p 615–747 Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1980).Google Scholar
  3. 3.
    Kieff, E. D., S. L. Bachenheimer, and B. Roizman, Size composition and structure of the deoxyribonucleic acid of herpes simplex virus subtype 1 and 2, J. Virol. 8:125–132 (1971).PubMedGoogle Scholar
  4. 4.
    Sheldrick, P., and N. Berthelot, Inverted repetitions in the chromosome of herpes simplex virus, Cold Spring Harbor Symp. Quant. Biol. 39:667–678 (1975).PubMedCrossRefGoogle Scholar
  5. 5.
    Peden, K., P. Mounts, and G. S. Hayward, Homology between mammalian cell DNA sequences and human herpesvirus genomes detected by a hybridization procedure with high complexity probe, Cell 31:71–80 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    Wu, J. R., C. W. Diffenbach, D. M. Torres, L. Aurelian, and P. O. P. Ts’o, DNA sequences homologous to the HSV-2 transforming DNA fragment in normal and trans formed cells, J. Cell. Biol. 97:135a (1983).Google Scholar
  7. 7.
    Spear, P. G., and B. Roizman, Proteins specified by herpes simplex virus. V. Purification of structural proteins of the herpesvirion, J. Virol. 9:143–159 (1972).PubMedGoogle Scholar
  8. 8.
    Strnad, B., and L. Aurelian, Proteins of herpesvirus type 2. I. Virion, nonvirion, and antigenic polypeptides in infected cells, Virology 69:438–452 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    P. G. Spear, Herpesviruses, in: Cell Membranes and Viral Envelopes ,Vol. 2 H. A. Blough and J. M. Tiffany, eds., pp. 709–750, Academic, London (1980).Google Scholar
  10. 10.
    Roizman, B., B. Norrild, C. Chan, and L. Pereira, Identification and preliminary mapping with monoclonal antibodies of a herpes simplex virus 2 glycoprotein lacking a known type 1 counterpart, Virology 133:242–247 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    Richman, D. D., A. Buckmaster, S. Bell, C. Hodgman, and A. C. Minson, Identification of a new glycoprotein of herpes simplex virus type 1 and genetic mapping of the gene that codes it, J. Virol. 57:647–655 (1986).PubMedGoogle Scholar
  12. 12.
    Sarmiento, M., M. Haffey, and P. G. Spear, Membrane proteins specified by herpes simplex viruses. III. Role of glycoprotein VP7 (B2) in virion infectivity, J. Virol. 29:1149–1160 (1979).PubMedGoogle Scholar
  13. 13.
    Manservigi, R., Spear, P. G., and A. Buchan, Cell fusion induced by herpes simplex virus is promoted and suppressed by different viral glycoproteins, Proc. Natl. Acad. Sci. USA 74:3913–3917 (1977).PubMedCrossRefGoogle Scholar
  14. 14.
    Kieff, E. D., B. Hoyer, S. L. Bachenheimer, and B. Roizman, Genetic relatedness of type 1 and type 2 herpes simplex viruses, J. Virol. 9:738–745 (1972).PubMedGoogle Scholar
  15. 15.
    Buchman, T. G., B. Roizman, G. Adams, and H. Stover, Restriction endonuclease fingerprinting of herpes simplex DNA: A novel epidemiology tool applied to a nosocomial outbreak, J. Infect. Dis 138:488–498 (1978).PubMedCrossRefGoogle Scholar
  16. 16.
    Cassai, E., D. DiLuca, R. Manservigi, M. Tognon, and A. Rotola, Comparative analysis of the virion polypeptides specified by herpes simplex virus type 2 strains, Arch. Virol. 64:35–45 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    Cohen, G. H., B. Dietzschold, M. Ponce de Leon, D. Long, E. Golub, A. Varrichio, L. Pereira, and R. J. Eisenberg, Localization and synthesis of an antigenic determinant of HSV glycoprotein D that stimulates production of neutralizing antibody, J. Virol. 49:102–108 (1984).PubMedGoogle Scholar
  18. 18.
    Eisenberg, R. J., D. Long, M. Ponce de Leon, J. T. Matthews, P. G. Spear, M. G. Gibson, L. A. Lasky, P. Berman, E. Golub, and G. H. Cohen, Localization of epitopes of herpes simplex virus type 1 glycoprotein D, J. Virol. 53:634–644 (1985).PubMedGoogle Scholar
  19. 19.
    DeFreitas, E. C., B. Dietzchold, and H. Koprowski, Human T-lymphocyte response in. vitro to synthetic peptides of herpes simplex virus glycoprotein D, Proc. Natl. Acad. Sci. USA 82:3425–3429 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    Morgan, C. H., M. Rose, and B. Mednis, Electron microscopy of herpes simplex virus, I. Entry, J. Virol. 2:507–516 (1968).Google Scholar
  21. 21.
    Morse, L. S., L. Pereira, B. Roizman, and P. A. Schaffer, Anatomy of herpes simplex virus (HSV) DNA. X. Mapping of viral genes by analysis of polypeptides and functions specified by HSV-1 and HSV-2 recombinants, J Virol. 26:389–410 (1978).PubMedGoogle Scholar
  22. 22.
    Honess, R. W., and B. Roizman, Proteins specified by herpes simplex virus. XI. Identifi cation and relative molar rates of synthesis of structural and nonstructural herpes virus polypeptides in the infected cells, J Virol. 12:1347–1365 (1973).PubMedGoogle Scholar
  23. 23.
    Honess, R., and B. Roizman, Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of 3 groups of viral proteins, J. Virol. 14:8–19 (1974).PubMedGoogle Scholar
  24. 24.
    O’Hare, P., and G. S. Hayward, Evidence for a direct role for both 175,000 and 110,000-molecular weight immediate early proteins of herpes simplex virus in transac-tivation of delayed early promoters, J. Virol. 53:751–760 (1985).PubMedGoogle Scholar
  25. 25.
    Sacks, W. R., S. C. Greene, D. P. Aschman, and P. A. Schaffer, Herpes simplex virus type 1 ICP27 is an essential regulatory protein, J. Virol. 55:796–803 (1985).PubMedGoogle Scholar
  26. 26.
    Sears, A. E., I. W. Halliburton, B. Meignier, S. Silver, and B. Roizman, Herpes simplex virus 1 mutant deleted in the 22 gene: Growth and gene expression in permissive and restrictive cells and establishment of latency in mice, J. Virol. 55:338–346 (1985).PubMedGoogle Scholar
  27. 27.
    Smiley, M. L., J. A. Hoxie, and H. M. Friedman, Herpes simplex virus type 1 infection of endothelial, epithelial, and fibroblast cells induces a receptor for C3b, J. Immunol. 134:2673–2678 (1985).PubMedGoogle Scholar
  28. 28.
    Para, M. F., R. B. Bauck, and P. G. Spear, Glycoprotein gE of HSV-1: Effects of anti-gE on virion infectivity and on virus-induced Fc binding receptors, J. Virol. 41:129–136 (1982).PubMedGoogle Scholar
  29. 29.
    Burns, W. H., L. C. Billups, and A. L. Notkins, Thymus dependence of viral antigens, Nature (Lond.) 256:654–656 (1975).CrossRefGoogle Scholar
  30. 30.
    Douglas, G. R., and R. B. Couch, A prospective study of chronic herpes simplex virus infection and recurrent labialis in humans, J. Immunol. 104:289–295 (1970).PubMedGoogle Scholar
  31. 31.
    Aurelian, L., and I. I. Kessler, Subclinical herpesvirus infections of the genital tract are commonly associated with viral shedding, Cervix 3:235–248 (1985).Google Scholar
  32. 32.
    Morahan, P. S., T. A. Thomson, S. Kohl, and B. K. Murray, Immune responses to labial infection of BALB/c mice with herpes simplex virus type 1, Infect. Immun. 32:180–187 (1981).PubMedGoogle Scholar
  33. 33.
    Morahan, P. S., M. C. Breinig, and M. B. McGeorge, Immune responses to vaginal or systemic infection of BALB/c mice with herpes simplex virus type 2, J. Immunol. 119:2030–2036 (1977).PubMedGoogle Scholar
  34. 34.
    Donnenberg, A. D., E. Chaikoff, and L. Aurelian, Immunity to herpes simplex virus type 2: Cell mediated immunity in latently infected guinea pigs, Infect. Immun. 30:99–109 (1980).PubMedGoogle Scholar
  35. 35.
    Scriba, M., and F. Tatzber, Pathogenesis of herpes simplex virus infections in guinea pigs, Infect. Immun. 34:655–661 (1981).PubMedGoogle Scholar
  36. 36.
    Coleman, R. M., A. J. Nahmias, S. C. Williams, D. J. Phillips, C. M. Black, and C. B. Reimer, IgG subclass antibodies to herpes simplex virus, J. Infect. Dis. 151:929–936 (1985).PubMedCrossRefGoogle Scholar
  37. 37.
    Lopez, C., and R. J. O’Reilley, Cell mediated immune responses in recurrent herpesvirus infections. I. Lymphocyte proliferation assay, J. Immunol. 118:895–902 (1977).PubMedGoogle Scholar
  38. 38.
    Day, R. P., J. Bienenstock, and W. E. Rawls, Basophil-sensitizing antibody response to herpes simplex viruses in rabbits, J. Immunol. 117:73–78 (1976).PubMedGoogle Scholar
  39. 39.
    Kalino, K. O. K., R. J. Marttila, K. Granfors, and M. K. Viljanen, Solid-phase radioimmunoassay of human immunoglobulin M and immunoglobulin G antibodies against herpes simplex virus type 1 capsid, envelope and excreted antigens, Infect. Immun. 15:883–889 (1977).Google Scholar
  40. 40.
    Ashley, R. L., and L. Corey, Effect of acyclovir treatment of primary genital herpes on the antibody response to herpes simplex virus, J. Clin. Invest. 73:681–688 (1984).PubMedCrossRefGoogle Scholar
  41. 41.
    Naylor, P. T., H. S. Larsen, L. Huang, and B. T. Rouse, In vivo induction of anti-herpes simplex virus immune response by type 1 antigens and lipid A incorporated into liposomes, Infect. Immun. 36:1209–1216 (1982).PubMedGoogle Scholar
  42. 42.
    Zweering, H. J., D. Martinez, R. J. Lynch, and L. W. Stanton, Immune responses in mice against herpes simplex virus: Mechanisms of protection against facial and ganglionic infections, Infect. Immun. 31:267–275 (1981).Google Scholar
  43. 43.
    Eberle, R., and R. J. Courtney, Preparation and characterization of specific antisera to individual glycoprotein antigens comprising the major glycoprotein region of HSV-1, J. Virol. 35:902–917 (1980).PubMedGoogle Scholar
  44. 44.
    Zezulak, K. M., and P. G. Spear, Characterization of a herpes simplex virus type 2 75,000 molecular weight glycoprotein antigenically related to herpes simplex virus type 1 glycoprotein, J. Virol. 47:553–562 (1983).PubMedGoogle Scholar
  45. 45.
    Pereira, L., D. V. Dondero, D. Gallo, V. Devlin, and J. D. Woodie, Serological analysis of herpes simplex virus types 1 and 2 with monoclonal antibodies, Infect. Immun. 35:363– 367 (1982).PubMedGoogle Scholar
  46. 46.
    Showalter, S. D., M. Zweig, and B. Hampar, Monoclonal antibodies to HSV-1 proteins including the immediate early protein ICP4, Infect. Immun. 34:684–692 (1981).PubMedGoogle Scholar
  47. 47.
    Balachandran, N. D., W. E. Harnish, W. E. Rawls, and S. Bacchetti, Glycoproteins of herpes simplex virus type 2 as defined by monoclonal antibodies, J. Virol. 44:344–355 (1982).PubMedGoogle Scholar
  48. 48.
    Holland, T. C., S. D. Marlin, M. Levine, and J. Glorioso, Antigenic variants of herpes simplex virus selected with glycoprotein specific monoclonal antibodies, J. Virol. 45:672–682 (1983).PubMedGoogle Scholar
  49. 49.
    Para, M. F., M. L. Parish, G. Noble, and P. G. Spear, Potent neutralizing activity associ ated with anti-glycoprotein D specificity among monoclonal antibodies selected for binding to herpes simplex virions, J. Virol. 55:483–488 (1985).PubMedGoogle Scholar
  50. 50.
    Pass, R. F., R. J. Whitley, J. D. Whelchel, A. G. Diethelm, D. W. Reynolds, and C. A. Alford, Identification of patients with increased risk of infection with herpes simplex virus after renal transplantation, J. Infect. Dis. 140:487–492 (1979).PubMedCrossRefGoogle Scholar
  51. 51.
    Nagafuchi, S., H. Oda, R. Mori, and T. Taniguchi, Mechanisms of acquired resistance to herpes simplex virus as studied in nude mice, J. Gen. Virol. 44:715–723 (1979).PubMedCrossRefGoogle Scholar
  52. 52.
    Howes, E. L., W. Taylor, N. A. Mitchison, and E. Simpson, MHC matching shows that at least two T cell subsets determine resistance to HSV, Nature (Lond.) 277:67–68 (1979).CrossRefGoogle Scholar
  53. 53.
    Pfìzenmaier, K., H. Jung, A. Starzinski-Powitz, M. Rollinghoff, and H. Wagner, The role of T cells in anti-herpes simplex virus immunity. I. Induction of antigen-specific cytotoxic T lymphocytes, J. Immunol. 119:939–944 (1977).PubMedGoogle Scholar
  54. 54.
    Lawman, M. J. P., B. T. Rouse, R. J. Courtney, and R. D. Walker, Cell mediated immunity against herpes simplex. Induction of cytotoxic T lymphocytes, Infect. Immun. 27:133–139 (1980).PubMedGoogle Scholar
  55. 55.
    Jennings, S. R., P. L. Rice, S. Pan, B. B. Knowles, and S. S. Tevethia, Recognition of herpes simplex virus antigens on the surface of mouse cells of the H-2b haplotype by virus-specific cytotoxic T lymphocytes, J. Immunol. 132:475–481 (1984).PubMedGoogle Scholar
  56. 56.
    Nash, A. A., J. Phelan, and P. Wildy, Cell mediated immunity in herpes simplex virus infected mice: H-2 mapping of the delayed type hypersensitivity response and the antiviral T cell response, J. Immunol. 126:1260–1261 (1981).PubMedGoogle Scholar
  57. 57.
    Green, J. A., T. J. Yeh, and J. C. Overall, Jr., Sequential production of IFN and immune specific IFN by human mononuclear leukocytes exposed to herpes simplex virus, J. Immunol. 127:1192–1196 (1981).PubMedGoogle Scholar
  58. 58.
    Nash, A. A., H. J. Field, and R. Quartey-Papafio, Cell mediated immunity in herpes simplex virus infected mice: Induction, characterization and antiviral effects of delayed type hypersensitivity, J. Gen. Virol. 48:351–357 (1980).PubMedCrossRefGoogle Scholar
  59. 59.
    Schreir, R. D., L. I. Pizer, and J. W. Moorhead, Delayed hypersensitivity to herpes simplex virus: Murine model, Infect. Immun. 35:566–571 (1982).Google Scholar
  60. 60.
    Prymowicz, D., R. N. Moore, and B. T. Rouse, Frequency of herpes simplex virus specific helper T lymphocyte precursors in the lymph node cells of infected mice, J. Immunol. 134:2683–2688 (1985).PubMedGoogle Scholar
  61. 61.
    Jacobs, R. P., L. Aurelian, and G. H. Cole, Cell mediated immune response to herpes simplex virus: Type specific lymphoproliferative responses in lymph nodes draining the site of primary infection, J. Immunol. 116:1520–1525 (1976).PubMedGoogle Scholar
  62. 62.
    Donnenberg, A. D., R. B. Bell, and L. Aurelian, Immunity to herpes simplex virus type 2 (HSV-2). I. Development of virus-specific lymphoproliferative and leukocyte migration inhibition factor responses in HSV-2-infected guinea pigs, Cell Immunol. 56:526–539 (1980).PubMedCrossRefGoogle Scholar
  63. 63.
    Chan, W. L., M. L. Lukig, and F. Y. Liew, Helper T cells induced by an immunopurified herpes simplex virus type 1 (HSV-1) 115 kilodalton glycoprotein (gB) protect mice against HSV-1 infection, J. Exp. Med. 162:1304–1318 (1985).PubMedCrossRefGoogle Scholar
  64. 64.
    Nash, A. A., R. Quartey-Papafio, and P. Wildy, Cell mediated immunity in herpes simplex virus-infected mice: Functional analysis of lymph node cells during periods of acute and latent infection, with reference to cytotoxic and memory cell, J. Gen. Virol. 49:309–317 (1980).Google Scholar
  65. 65.
    Pfizenmaier, K., A. Strazinski-Powitz, M. Rollinghoff, D. Falke, and H. Wagner, T cell mediated cytotoxicity against herpes simplex virus-infected target cells, Nature (Lond.) 265:630–632 (1977).CrossRefGoogle Scholar
  66. 66.
    Rouse, B. T., H. S. Larsen, and H. Wagner, Frequency of cytotoxic T lymphocyte precursors to herpes simplex virus type 1 as determined by limiting dilution analysis, Infect. Immun. 39:785–792 (1983).PubMedGoogle Scholar
  67. 67.
    Carter, V. C., P. L. Rice, and S. S. Tevethia, Intratypic and intertypic specificity of lymphocytes involved in the recognition of herpes simplex virus glycoproteins, Infect. Immun. 37:116–126 (1982).PubMedGoogle Scholar
  68. 68.
    Schmid, D. S., H. S. Larsen, and B. T. Rouse, Role of Ia antigen expression and secretory function of accessory cells in the induction of cytotoxic T lymphocyte re sponses against herpes simplex virus, Infect. Immun. 37:1138–1147 (1982).PubMedGoogle Scholar
  69. 69.
    Schmid, D. S., and B. T. Rouse, Cellular interaction in the cytotoxic T lymphocyte response to HSV antigens: Differential antigen activation requirements for the helper T lymphocyte and cytotoxic T lymphocyte precursors, J. Immunol. 131:479–484 (1983).PubMedGoogle Scholar
  70. 70.
    Yasukawa, M., and J. M. Zarling, Human cytotoxic T cell clones directed against herpes simplex virus infected cells. I. Lysis restricted by HLA class II MB and DR antigens, J. Immunol. 133:422–427 (1984).PubMedGoogle Scholar
  71. 71.
    Yasukawa, M., and J. M. Zarling, Human cytotoxic T cell clones directed against HSV infected cells. II. Bifunctional clones with cytotoxic and virus induced proliferative activities exhibit HSV type 1 and 2 specific or type common reactivities, J. Immunol. 133:2736–2742 (1984).PubMedGoogle Scholar
  72. 72.
    Yasukawa, M., and J. M. Zarling, Human cytotoxic T cell clones directed against herpes simplex virus infected cells. III. Analysis of viral glycoproteins recognized by CTL clones by using recombinant herpes simplex viruses, J. Immunol. 134:2679–2682 (1985).PubMedGoogle Scholar
  73. 73.
    Morahan, P. S., J. R. Conner, and K. R. Leary, Viruses and the versatile macrophage, Br. Med Bull. 41:51–21 (1985).Google Scholar
  74. 74.
    Morse, S. S., and P. S. Morahan, Activated macrophages mediate interferon-indepen-dent inhibition of herpes simplex virus, Cell Immunol. 58:72–84 (1981).PubMedCrossRefGoogle Scholar
  75. 75.
    Kohl, S., S. E. Starr, J. M. Olske, S. L. Shore, R. B. Ashman, and A. J. Nahmias, Human monocyte-macrophage mediated antibody dependent cytotoxicity to herpes simplex virus infected cells, J. Immunol. 118:729–735 (1977).PubMedGoogle Scholar
  76. 76.
    Morahan, P. S., L. A. Glasgow, J. L. Crane, Jr., and E. Kern, Comparison of antiviral and antitumor activity of activated macrophages, Cell Immunol. 28:404–415 (1977).PubMedCrossRefGoogle Scholar
  77. 77.
    Lopez, C., and G. Dudas, Replication of herpes simplex virus type 1 in macrophages from resistant and susceptible mice, Infect. Immun. 23:432–437 (1979).PubMedGoogle Scholar
  78. 78.
    Armerding, D., P. Mayer, M. Scriba, A. Hien, and H. Rossiter, In vivo modulation of macrophage functions by herpes simplex virus type 2 in resistant and sensitive inbred mouse strains, Immunobiology 106:217–227 (1981).CrossRefGoogle Scholar
  79. 79.
    Lopez, C., R. Ryshke, and M. Bennett, Marrow dependent cells depleted by 89Sr medi ate genetic resistance to herpes simplex virus type 1 infection in mice, Infect. Immun. 28:1028–1032 (1980).PubMedGoogle Scholar
  80. 80.
    Oppenheim, J. J., and I. Gery, Interleukin 1 is more than an interleukin, Immunol. Today 3:113–119 (1982).CrossRefGoogle Scholar
  81. 81.
    Luger, T. A., B. M. Stadler, S. I. Katz, and J. J. Oppenheim, Epidermal cell-derived thymocyte activating factor (ETAF), J. Immunol. 127:1493–1498 (1981).PubMedGoogle Scholar
  82. 82.
    Stingl, G., K. Tamaki, and S. I. Katz, Origin and function of epidermal Langerhans cells, Immunol. Rev. 53:149–174 (1980).PubMedCrossRefGoogle Scholar
  83. 83.
    Hayashi, Y., and L. Aurelian, Immunity to herpes simplex virus type 2: Viral antigen presenting capacity of epidermal cells and its impairment by ultraviolet irradiation, J. Immunol. 136:1087’1092 (1986).PubMedGoogle Scholar
  84. 84.
    Yasumoto, S., N. Okabe, and R. Mori, Role of epidermal langerhans cells in resistance to herpes simplex virus infection, Arch. Virol. 90:261–271 (1986).PubMedCrossRefGoogle Scholar
  85. 85.
    Herberman, R. B. (ed.), Natural Cell Mediated Immunity Against Tumors ,Academic, New York (1980).Google Scholar
  86. 86.
    Ortaldo, J. R., and R. B. Herberman, Heterogeneity of natural killer cells, Annu. Rev. Immunol. 2:359–394 (1984).PubMedCrossRefGoogle Scholar
  87. 87.
    Colmenares, C., and C. Lopez, Enhanced lysis of herpes simplex virus type 1 infected mouse cell lines by NC and NK effectors, J. Immunol. 136:3473–3480 (1986).PubMedGoogle Scholar
  88. 88.
    Lattime, E. C., G. A. Pecoraro, and O. Stutman, Natural cytotoxic cells against solid tumors in mice. III. A comparison of effector cell antigenic phenotype and target cell recognition structures with those of NK cells, J. Immunol. 126:2011–2014 (1981).PubMedGoogle Scholar
  89. 89.
    Bishop, G. A., J. C. Glorioso, and S. A. Schwartz, Relationship between expression of HSV glycoproteins and susceptibility of target cells to human natural killer activity, J. Exp. Med. 157:1544–1561 (1983).PubMedCrossRefGoogle Scholar
  90. 90.
    Hercend, T., E. L. Reinherz, S. Meuer, S. F. Scholssman, and J. Ritz, Phenotypic and functional heterogeneity of human cloned natural killer cell lines, Nature (Lond.) 301:158–160 (1983).CrossRefGoogle Scholar
  91. 91.
    Brooks, C. G., R. C. Burton, S. B. Pollack, and C. S. Henney, The presence of NK alloantigens on cloned cytotoxic T lymphocytes, J. Immunol. 131:1391–1395 (1983).PubMedGoogle Scholar
  92. 92.
    C. G. Brooks, Reversible induction of natural killer cell activity in cloned murine cytotoxic T lymphocytes, Nature (Lond.) 305:155–158 (1983).CrossRefGoogle Scholar
  93. 93.
    Grossman, Z., and R. B. Herberman, Natural killer cells and their relationship to T-cells. Hypothesis on the role of T cell receptor gene rearrangement on the course of adoptive differentiation, Cancer Res. 46:2651–2658 (1986).PubMedGoogle Scholar
  94. 94.
    Bishop, G. A., S. D. Marlin, S. A. Schwartz, and J. C. Glorioso, Human natural killer cell recognition of herpes simplex virus type 1 glycoproteins: Specificity analysis with the use of monoclonal antibodies and antigenic variants, J. Immunol. 133:2206–2213 (1984).PubMedGoogle Scholar
  95. 95.
    C. Lopez, Resistance to herpes simplex virus type 1 (HSV-1), Curr. Top. Microbiol. Immunol. 92:15–24 (1981).PubMedCrossRefGoogle Scholar
  96. 96.
    Habu, S., K. I. Akametsu, N. Tamaoki, and K. Okumura, In vivo significance of NK cell on resistance against virus (HSV-1) infections in mice, J. Immunol. 133:2743–2747 (1984).PubMedGoogle Scholar
  97. 97.
    Engler, H., R. Zawatzky, H. Kirchner, and D. Armerding, Experimental infection of inbred mice with herpes simplex virus. VI. Comparison of interferon production and natural killer cell activity in susceptible and resistant adult mice, Arch. Virol. 74:239–247 (1982).PubMedCrossRefGoogle Scholar
  98. 98.
    Fitzgerald, P. A., M. Mendelsohn, and C. Lopez, Human natural killer cells limit replica tion of herpes simplex virus type 1 in vitro, J. Immunol. 134:2666–2672 (1985).PubMedGoogle Scholar
  99. 99.
    Lopez, C., D. Kirkpatrick, S. E. Read, P. A. Fitzgerald, J. Pitt, S. Pahwa, C. Y. Ching, and E. M. Smithwick, Correlation between low natural kill of fibroblasts infected with herpes simplex virus type 1 and susceptibility to herpesvirus infections, J. Infect. Dis. 147:1030–1035 (1983).PubMedCrossRefGoogle Scholar
  100. 100.
    Siebens, H., S. S. Tevethia, and B. M. Babior, Neutrophil mediated antibody-dependent killing of herpes simplex virus infected cells, Blood 54:88–94 (1979).PubMedGoogle Scholar
  101. 101.
    Melewicz, F. M., S. L. Shore, E. W. Ades, and D. J. Phillips, The mononuclear cells in human blood which mediate antibody-dependent cellular cytotoxicity to virus infected target cells. II. Identification as a K cell, J. Immunol. 118:567–573 (1977).PubMedGoogle Scholar
  102. 102.
    Gale, R. P., and J. Zighelboim, Polymorphonuclear leukocytes in antibody dependent cytotoxicity, J. Immunol. 114:1047–1051 (1975).PubMedGoogle Scholar
  103. 103.
    Grewal, A. S., B. T. Rouse, and L. A. Babiuck, Mechanisms of recovery from viral infections: Destruction of infected cells by neutrophils and complement, J. Immunol. 124:312–319 (1980).PubMedGoogle Scholar
  104. 104.
    Sheridan, J. F., A. D. Donnenberg, and L. Aurelian, Immunity to herpes simplex virus type 2. IV. Impaired lymphokine production correlates with a perturbation in the balance of T lymphocyte subsets, J. Immunol. 129:326–331 (1982).PubMedGoogle Scholar
  105. 105.
    S. C. Mogensen, Macrophage migration inhibition as a correlate of cell mediated immunity to herpes simplex virus type 2 in mice, Immunobiology 162:28–38 (1982).PubMedCrossRefGoogle Scholar
  106. 106.
    Kirchner, H., R. Zawatsky, and H. M. Hirt, In vitro production of immune interferon by spleen cells of mice immunized with herpes simplex virus, Cell Immunol. 40:204–210 (1978).PubMedCrossRefGoogle Scholar
  107. 107.
    Zawatzky, R., I. Gresser, E. Demayer, and H. Kirchner, The role of interferon in the resistance of C57BL/6 mice to various doses of herpes simplex virus type 1, J. Infect. Dis. 146:405–410 (1982).PubMedCrossRefGoogle Scholar
  108. 108.
    Brucher, J., T. Domke, C. H. Schroder, and H. Kirchner, Experimental infection of inbred mice with HSV. VI. Effect of IFN on in vitro virus replication in macrophages, Arch. Virol. 82:83–93 (1984).PubMedCrossRefGoogle Scholar
  109. 109.
    Chmielarczyk, W., I. Domke, and H. Kirchner, Role of interferon in the resistance of C3H/HeJ mice to infection with herpes simplex virus, Antiviral Res. 5:55–59 (1985).PubMedCrossRefGoogle Scholar
  110. 110.
    Bukowski, J. F., and R. M. Welsh, The role of natural killer cells and interferon in resistance to acute infection of mice with herpes simplex virus type 1, J. Immunol. 136:3481–3485 (1986).PubMedGoogle Scholar
  111. 111.
    Kirchner, H., H. Engler, C. H. Schroder, R. Zawatzky, and E. Starch, Herpes simplex virus type 1 induced interferon production and activation of natural killer cells in mice, J. Gen. Virol. 64:437–441 (1983).PubMedCrossRefGoogle Scholar
  112. 112.
    Kreeb, F., and R. M. Zinkernagel, Role of the H-2i region in the generation of an antiviral cytotoxic T cell response in vitro, Cell Immunol. 53:285–297 (1980).PubMedCrossRefGoogle Scholar
  113. 113.
    Okado, M., and C. S. Henney, The differentiation of cytotoxic T cells in vitro. III. The role of helper T cells and their products in the differentiation of cytotoxic cells from “memory” cell populations, J. Immunol. 125:850–857 (1980).Google Scholar
  114. 114.
    Wagner, H., C. Hardt, B. T. Rouse, M. Rollinghoff, P. Schaurich, and K. Pfizenmaier, Dissection of the proliferative and differentiative signals controlling murine cytotoxic T lymphocyte responses, J. Exp. Med. 155:1876–1881 (1982).PubMedCrossRefGoogle Scholar
  115. 115.
    Farrar, W. L., H. M.Johnson, and J. J. Farrar, Regulation of the production of immune interferon and cytotoxic T lymphocytes by interleukin 2, J. Immunol. 126:1120–1125 (1981).PubMedGoogle Scholar
  116. 116.
    Johnson, H. M., and W. L. Farrar, The role of -interferon like lymphokine in the activation of T cells for expression of interleukin 2 receptors, Cell. Immunol. 75:154–159 (1983).PubMedCrossRefGoogle Scholar
  117. 117.
    Basham, T. J., and T. C. Merigan, Recombinant IFN increases HLA-DR synthesis and expression,/. Immunol. 130:1492–1494 (1983).Google Scholar
  118. 118.
    Roberts, W. K., and A. Vasil, Evidence for identity of murine -interferon and mac rophage activating factor, J. Interferon Res. 2:519–532 (1982).PubMedCrossRefGoogle Scholar
  119. 119.
    O’Reilly, R., A. Chibbaro, E. Anger, and C. Lopez, Cell mediated immune responses in patients with recurrent herpes simplex infections. II. Infection associated deficiency of lymphokine production in patients with recurrent herpes labialis or herpes progenitalis, J. Immunol. 118:1095–1102 (1977).PubMedGoogle Scholar
  120. 120.
    Shillitoe, E. J., J. M. A. Wilton, and T. Lehner, Sequential changes in cell-mediated immune responses to herpes simplex virus after recurrent herpetic infection in humans, Infect. Immun. 18:130–137 (1977).PubMedGoogle Scholar
  121. 121.
    Rattray, M. C, G. M. Peterman, L. C. Altman, L. Corey, and K. K. Holmes, Lymphocyte derived chemotactic factor synthesis in initial genital herpesvirus infection: Correlation with lymphocyte transformation, Infect. Immun. 30:110–116 (1980).PubMedGoogle Scholar
  122. 122.
    Sheridan, J. F., and L. Aurelian, Immunity to herpes simplex virus type 2. V. Risk of recurrent disease following primary infection: Modulation of T cell subsets and lymphokine (LIF) production, Diagno. Immunol. 1:245–256 (1983).Google Scholar
  123. 123.
    Bouroncle, B. A., K. D. Clausen, and E. M. Dorner, Replication of HSV in cultures of phytohemagglutinin stimulated human lymphocytes, J. Natl. Cancer Inst. 44:1065–1078 (1970).PubMedGoogle Scholar
  124. 124.
    Pelton, B. K., R. C. Imrie, and A. M. Denman, Susceptibility of human lymphocyte populations to infection by herpes simplex virus, Immunology 32:803–810 (1977).PubMedGoogle Scholar
  125. 125.
    Plaeger-Marshall, S., and J. W. Smith, Inhibition of mitogen and antigen induced lymphocyte blastogenesis by herpes simplex virus, J. Infect. Dis. 138:506–511 (1978).PubMedCrossRefGoogle Scholar
  126. 126.
    Rinaldo, C. R., B. S. Richter, P. H. Black, R. Callery, L. Chess, and M. S. Hirsch, Replication of herpes simplex virus and cytomegalovirus in human leukocytes, J. Immunol. 120:130–136 (1978).PubMedGoogle Scholar
  127. 127.
    Kirchner, H., H. M. Hirt, C. Kleinicke, and K. Munk, Replication of herpes simplex virus in mouse spleen cell cultures stimulated by lipopolysaccharide, J. Immunol. 117:1753–1756 (1976).PubMedGoogle Scholar
  128. 128.
    Hammer, S. M., and J. M. Gillis, Herpes simplex virus replication in interleukin-2 stimulated human T cells, J. Infect. Dis. 151:544–548 (1985).PubMedCrossRefGoogle Scholar
  129. 129.
    Friedman, R. M., and H. L. Cooper, Stimulation of IFN production in human lymphocytes by mitogen, Proc. Soc. Exp. Biol. Med. 125:901–905 (1967).PubMedGoogle Scholar
  130. 130.
    D. Westmoreland, Herpes simplex virus type-1 and human lymphocytes: Virus expression and the response to infection of adult and foetal cells, J. Gen. Virol. 40:559–575 (1978).PubMedCrossRefGoogle Scholar
  131. 131.
    Pelton, B. K., I. B. Duncan, and A. M. Denman, Herpes simplex virus depresses antibody production by affecting T cell function, Nature (Lond.) 284:176–177 (1980).CrossRefGoogle Scholar
  132. 132.
    Wainberg, M. A., J. D. Portnoy, B. Clencer, S. Hubschman, J. Legace-Simard, N. Rabinovitch, Z. Remer, and J. Mendelson, Viral inhibition of lymphocyte proliferative responsiveness in patients suffering from recurrent lesions caused by herpes simplex virus, J. Infect. Dis. 152:441–448 (1985).PubMedCrossRefGoogle Scholar
  133. 133.
    Sethi, K. K., and H. Brandis, In vitro acquisition of resistance against herpes simplex virus by permissive murine macrophages, Arch. Virol. 59:157–172 (1979).PubMedCrossRefGoogle Scholar
  134. 134.
    Plaeger-Marshall, S., L. A. Wilson, and J. W. Smith, Alteration of rabbit alveolar and peritoneal macrophage function by herpes simplex virus, Infect. Immun. 41:1376–1379 (1983).PubMedGoogle Scholar
  135. 135.
    Kohl, S., D. M. Jansen, and L. S. Loo, Indomethacin enhancement of human natural killer cytotoxicity to herpes simplex virus infected cells in vitro and in vivo, Prostaglandins Leukotńenes Med. 9:159–166 (1982).CrossRefGoogle Scholar
  136. 136.
    Trofatter, K. F. Jr., and C. A. Daniels, Interaction of human cells with prostaglandins and cyclic AMP modulators. I. Effects on complement-mediated lysis and antibody-dependent cell-mediated cytolysis of herpes simplex virus-infected human fibroblasts, J. Immunol 122:1363–1370 (1979).PubMedGoogle Scholar
  137. 137.
    J. Rhodes, Modulation of macrophage Fc receptor expression in vitro by insulin and cyclic nucleotides, Nature (Lond.) 257:597–599 (1985).CrossRefGoogle Scholar
  138. 138.
    A. A. Newton, Effect of cyclic nucleotides on the response of cells to infection by various herpesviruses, in: Oncogenesis and Herpes Viruses. Vol. III. (G. de The, W. Henle, and F. Rapp, eds.), pp. 381–387, IARC, Lyon (1978).Google Scholar
  139. 139.
    Nash, A. A., and P. G. H. Gell, Membrane phenotype of murine effector and suppressor T cells involved in delayed hypersensitivity and protective immunity to herpes simplex virus, Cell. Immunol. 75:348–355 (1983).PubMedCrossRefGoogle Scholar
  140. 140.
    Whittum, J. A., J. Y. Niederhorn, J. P. McCulley, and J. W. Streilein, Role of suppressor T cells in herpes simplex virus-induced immune deviation, J. Virol. 51:556–558 (1984).PubMedGoogle Scholar
  141. 141.
    L. Aurelian, Mechanism of recurrent herpes infections and prospects for vaccination, in: Infections in Reproductive Health, Vol. I: Common Infections (L. G. Keith, G. S. Berger, D. A. Edelman, eds.), pp. 115–136, MTP Press, Lancaster, Pennsylvania (1985).Google Scholar
  142. 142.
    Iwasaka, T., J. F. Sheridan, and L. Aurelian, Immunity to herpes simplex virus type 2: Recurrent lesions are associated with the induction of suppressor cells and soluble suppressor factors, Infect. Immun. 42:955–964 (1983).PubMedGoogle Scholar
  143. 143.
    Schooley, R. T., M. S. Hirsch, R. B. Colvin, A. B. Cosimi, N. E. Tolkoff-Rubin, R. T. McCluskey, R. C. Burton, P. S. Russell, J. T. Herrin, F. L. Delmonico, J. V. Giorgi, W. Henle, and R. H. Rubin, Association of herpesvirus infections with T-lymphocyte-subset alterations, glomerulopathy and opportunistic infections after renal transplantation, N. Engl. J. Med. 308:307–313 (1983).PubMedCrossRefGoogle Scholar
  144. 144.
    Nick, S., P. Kampe, A. Knoblich, B. Metzger, and D. Falke, Suppression and enhancement of humoral antibody formation by herpes simplex virus types 1 and 2, J. Gen. Virol. 67:1015–1024 (1986).PubMedCrossRefGoogle Scholar
  145. 145.
    Hirsch, M. S., S. H. Cheeseman, and S. M. Hammer, Human herpesvirus infections: Pathogenesis and clinical implications, in: Seminars in Infectious Disease, Vol. II (L. Weinstein and B. N. Fields, eds.), pp. 217–264, Stratton Intercontinental Medical Book, New York (1979).Google Scholar
  146. 146.
    McKendall, R. R., T. Klassen, and J. R. Baringer, Host defenses in herpes simplex infections of the nervous system: Effect of antibody on disease and viral spread, Infect. Immun. 23:305–311 (1979).PubMedGoogle Scholar
  147. 147.
    Worthington, M., McG. A. Conliffe, and A. Baron, Mechanism of recovery from systemic herpes simplex virus infection. I. Comparative effectiveness of antibody and reconstitution of immune spleen cells in immunosuppressed mice, J. Infect. Dis. 142:163–174 (1980).PubMedCrossRefGoogle Scholar
  148. 148.
    Kino, J., Y. Hayashi, I. Hayashida, and R. Mori, Dissemination of herpes simplex virus in nude mice after intracutaneous inoculation and the effect of antibody in the course of infection, J. Gen. Virol. 63:475–479 (1982).PubMedCrossRefGoogle Scholar
  149. 149.
    Simmons, A., and A. A. Nash, Role of antibody in primary and recurrent herpes simplex virus infection, J. Virol. 53:944–948 (1985).PubMedGoogle Scholar
  150. 150.
    Openshaw, H., L. V. S. Asher, C. Wohlenberg, T. Sekizawa, and A. L. Notkins, Acute and latent herpes simplex virus ganglionic infection: Immune control and viral reactivation, J. Gen. Virol. 44:205–215 (1979).PubMedCrossRefGoogle Scholar
  151. 151.
    Price, R. W. and J. Schmitz, Route of infection, systemic host resistance, and integrity of ganglionic axons influence acute and latent herpes simplex virus infection of the superior cervical ganglion, Infect. Immun. 23:373–383 (1979).PubMedGoogle Scholar
  152. 152.
    Waltz, M. A., H. Yamamoto, and A. L. Notkins, Immunological response restricts numbers of cells in sensory ganglia infected with herpes simplex virus, Nature (Lond.) 264:554–556 (1976).CrossRefGoogle Scholar
  153. 153.
    Openshaw, H., T. Sekizawa, C. Wohlenberg, and A. L. Notkins, The role of immunity in latency and reactivation of herpes simplex viruses, in: The Human Herpesviruses (A. J. Nahmias, W. R. Dowdle, and R. F. Schinazi, eds.), pp. 289–296, Elsevier, New York (1980).Google Scholar
  154. 154.
    Stevens, J. G., and M. L. Cook, Maintenance of latent herpetic infection: An apparent role for antiviral IgG, J. Immunol. 113:1685–1693 (1974).PubMedGoogle Scholar
  155. 155.
    M. Scriba, Vaccination against herpes simplex virus: Animal studies on the efficacy against acute, latent and recurrent infections, in: Herpetic Ocular Diseases (R. Sund-macher, ed.), pp. 67–72, Springer-Verlag (Bergmann), Berlin (1981).Google Scholar
  156. 156.
    Corey, L., W. C. Reeves, and K. K. Holmes, Cellular immune response in genital herpes simplex virus infection, N. Engl. J. Med. 299:986–991 (1978).PubMedCrossRefGoogle Scholar
  157. 157.
    Darville, J. M., and W. A. Blyth, Neutralizing antibody in mice with primary and recur rent herpes simplex virus infection, Arch. Virol. 71:303–310 (1982).PubMedCrossRefGoogle Scholar
  158. 158.
    Zweerink, H. J., and L. W. Stanton, Immune response to HSV infections: Virus specific antibodies in sera from patients with recurrent facial infections, Infect. Immun. 31:624– 630 (1981).PubMedGoogle Scholar
  159. 159.
    Tokumaru, T. A possible role for αA-immunoglobulin in herpes simplex virus infection in man, J. Immunol. 97:248–259 (1966).PubMedGoogle Scholar
  160. 160.
    Friedman, M. G., and N. Kimmel, Herpes simplex virus-specific serum immunoglobulin A: Detection in patients with primary or recurrent herpes infections and in healthy adults, Infect. Immun. 37:374–377 (1982).PubMedGoogle Scholar
  161. 161.
    Fujimiya, J., L. A. Babiuk, and B. T. Rouse, Direct lymphocytotoxicity against herpes simplex virus infected cells, Can. J. Microbiol. 24:1076–1081 (1978).PubMedCrossRefGoogle Scholar
  162. 162.
    Russell, A. S., J. Percy, and T. Kovithavongs, Cell mediated immunity to herpes simplex in humans: Lymphocyte cytotoxicity measured by 89Sr release from infected cells, Infect. Immun. 11:355–359 (1975).PubMedGoogle Scholar
  163. 163.
    Steele, R. W., M. M. Vincent, S. A. Hensen, D. A. Fucillo, I. A. Chapas, and L. Canales, Cellular immune responses to herpes simplex virus type 1 in recurrent herpes labialis. In vitro blastogenesis and cytotoxicity to infected cell lines, J. Infect. Dis. 131:528–534 (1975).PubMedCrossRefGoogle Scholar
  164. 164.
    Cunningham, A. L., and T. C. Merigan, Gamma interferon production appears to predict time of recurrence of herpes labialis, J. Immuno. 130:2397–2400 (1983).Google Scholar
  165. 165.
    Wilton, J. M. A., L. Ivanyi, and T. Lehner, Cell mediated immunity in herpesvirus hominis infections, Br. Med. J. 1:723–726 (1972).PubMedCrossRefGoogle Scholar
  166. 166.
    Gange, R. W., A. D. Bats, J. R. Park, C. M. Bradstreet, and E. L. Rhodes, Cellular immunity and circulating antibody to herpes simplex virus in subjects with recurrent herpes simplex lesions and controls as measured by the mixed leucocyte migration inhibition test and complement fixation, Brt. J. Dermatol. 97:539–544 (1975).CrossRefGoogle Scholar
  167. 167.
    Hill, T. J., Herpes simplex virus latency, in: The Viruses, Vol. 3: The Herpesviruses (B. Roizman, ed.), pp. 175–240, Plenum, New York (1985).Google Scholar
  168. 168.
    Sheridan, J. F., M. Beck, L. Aurelian, and M. Radowsky, Immunity to herpes simplex virus: Virus reactivation modulates lymphokine activity, J. Infect. Dis. 152:339–456 (1985).CrossRefGoogle Scholar
  169. 169.
    Horohov, D. W., R. N. Moore, and B. T. Rouse, Regulation of herpes simplex virus-specific lymphoproliferation by suppressor cells, J. Virol. 56:1–6 (1985).PubMedGoogle Scholar
  170. 170.
    Horohov, D. W., J. H. Wyckoff, III, R. N. Moore, and B. T. Rouse, Regulation of herpes simplex virus specific cell-mediated immunity by a specific suppressor factor, /. Virol. 58:331–338 (1986).PubMedGoogle Scholar
  171. 171.
    Goldyne, M. E., Prostaglandins and cutaneous inflammation, J. Invest. Dermatol. 64:377–385 (1975).PubMedCrossRefGoogle Scholar
  172. 172.
    Granstein, R. D., A. Lowy, and M. I. Greene, Epidermal antigen-presenting cells in activation of suppression: Identification of a new functional type of ultraviolet radiation-resistant epidermal cell, J. Immunol. 132:563–565 (1984).PubMedGoogle Scholar
  173. 173.
    Yasumoto, S., Y. Hayashi, and L. Aurelian, Immunity to herpes simplex virus type 2: Suppression of virus-induced immune responses in UVB irradiated mice, J. Immunol. 139:2788–2793 (1987).PubMedGoogle Scholar
  174. 174.
    Sheridan, J. F., Beck, M., Smith, C. C., and L. Aurelian, Reactivation of herpes simplex virus is associated with production of a low molecular weight factor that inhibits lymphokine activity in vitro. J. Immunol. 138:1234–1239 (1987).PubMedGoogle Scholar
  175. 175.
    Aurelian, L., Yasumoto, S., and Smith, C. C., Antigen-specific immune-suppressor fac tor in herpes simplex virus type 2 infections of UVB-irradiated mice. J. Virol. 63:2520– 2524 (1988).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Laure Aurelian
    • 1
    • 2
  1. 1.Department of Pharmacology and Experimental Therapeutics and MicrobiologyUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Divisions of Comparative Medicine and BiophysicsThe Johns Hopkins Medical InstitutionsBaltimoreUSA

Personalised recommendations