Immunosuppression by Measles Virus

  • Paolo Casali
  • Minoru Nakamura
  • Michael B. McChesney
Part of the Infectious agents and pathogenesis book series (IAPA)


The ability of measles virus to alter an expected immune (adaptive) response was first recognized by Clements von Pirquet in 1908. He observed that chil dren who were tuberculin positive before contracting acute measles virus infection failed to mount specific skin responses to tuberculin during measles. Later reports confirmed von Pirquet–s observation and extended his findings to other infectious agents.(1–8) Furthermore, during acute measles virus infection, humans may not make antibodies to tetanus toxoid or H and O antigens of Salmonella typhi. Lymphocytes harvested from persons undergoing acute measles virus infection respond poorly, in vitro, to a variety of mitogenic or antigenic stimuli and are deficient in producing chemotactic factors. Therefore, in vivo infection with measles virus can result in a weakened or abolished immune response and in susceptibility to concurrent infection with other viral or bacterial agents.(9,10–16) Indeed, it has been recognized that during measles virus infection, susceptibility to herpes simplex virus (HSV) increases(17) and pulmonary tuberculosis worsens(18–20) By contrast, lipoid nephrosis, a disease that frequently responds to immune suppressive therapy, can dramatically improve in the presence of a concomitant measles virus infection(21–23) The concept that measles virus can also impair the function of some cells involved in natural defense (nonadaptive) mechanisms stems from more recent findings and suggests the need for wider reconsideration of the in vivo immunosuppressive role of measles virus.(24)


Peripheral Blood Mononuclear Cell Measle Virus Purify Protein Derivative Subacute Sclerosing Panencephalitis Measle Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bloomfield, A. L., and J. Mateer, Changes in skin sensitiveness to tuberculin during epidemic influenza, Am. Rev. Tuberc. Pulm. Dis. 3:166–168 (1919).Google Scholar
  2. 2.
    Westwater, J. S., Tuberculin allergy in acute infectious diseases: A study of the intra cutaneous test, Q. J. Med. 4:203–255 (1935).Google Scholar
  3. 3.
    Mellman, W. J., and R. Wilson, Depression of the tuberculin reaction by attenuated measles virus vaccine, J. Lab. Clin. Med. 61:453–458 (1963).PubMedGoogle Scholar
  4. 4.
    Starr, S., and S. Berkovich, Effects of measles, gamma-globulin-modified measles and vaccine measles on the tuberculin test, N. Engl. J. Med. 270:386–392 (1964).PubMedCrossRefGoogle Scholar
  5. 5.
    Brody, A., and R. McAlister, Depression of tuberculin sensitivity following measles vaccination, Am. Rev. Respir. Dis. 90:607–611 (1964).PubMedGoogle Scholar
  6. 6.
    Fireman, P., G. Friday, and G. Kumate, Effects of measles vaccine on immunological responsiveness, Pediatcs 43:264–272 (1969).Google Scholar
  7. 7.
    Kantor, F. S., Infection, anergy and cell mediated immunity, N. Engl. J. Med. 292:629–634 (1975).PubMedCrossRefGoogle Scholar
  8. 8.
    Whittle, H. C., J. Dossetor, A. Odulojou, P. D. M. Bryce, and B. M. Greenwood, Cell mediated immunity during natural measles infection, J. Clin. Invest. 62:678–684 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    Notkins, A. L., S. E. Mergenhagen, and R. J. Howard, Effects of virus infections on the function of the immune system, Annu. Rev. Microbiol. 24:525–538 (1970).PubMedCrossRefGoogle Scholar
  10. 10.
    Finkel, A., and P. B. Dent, Virus-leukocyte interactions: Relationship to host resistance in virus infections in man, in: Pathobiology Annual (H. L. Loachimed), ed., pp. 47–70, Appleton-Century-Crofts, New York (1973).Google Scholar
  11. 11.
    Woodruff, J. E., and J. J. Woodruff, T. lymphocyte interaction with viruses and virus-infected tissues, Prog. Med. Virol. 19:120–160 (1975).PubMedGoogle Scholar
  12. 12.
    Wheelock, E. F., and S. T. Toy, Participation of lymphocytes in viral infections, Adv. Immunol. 16:123–184 (1975).CrossRefGoogle Scholar
  13. 13.
    Black, F. L., Measles, in: Viral Infections of Humans. Epidemiology and Control (A. S. Evans, ed.), pp. 297–316, Wiley, London (1976).CrossRefGoogle Scholar
  14. 14.
    Morgan, E. M., and F. Rapp, Measles virus and its associated diseases, Bacteriol. Rev. 41:636–666 (1977).PubMedGoogle Scholar
  15. 15.
    Oldstone, M. B. A., Immunopathology of persistent viral infections, Hosp. Pract. l7(12):61–72 (1982).Google Scholar
  16. 16.
    Oldstone, M. B. A., Virus can alter cell function without causing cell pathology: Disordered function leads to imbalance of homeostasis and disease, in: Concepts in Viral Pathogenesis (A. L. Notkins and M. B. A. Oldstone, eds.), pp. 269–276, Springer-Verlag, New York (1984).CrossRefGoogle Scholar
  17. 17.
    Orren, A., A. Kipps, J. W. Moodie, D. W. Beatty, E. B. Dowdle, and J. P. Mclntyre, Increased susceptibility to herpes simplex virus infections in children with acute measles, Infect. Immun. 31:1–6 (1981).PubMedGoogle Scholar
  18. 18.
    Osier, W., The Principles and Practice of Medicine ,Appleton, New York (1892).Google Scholar
  19. 19.
    Nalbant, J., The effect of contagious diseases on pulmonary tuberculosis and on theGoogle Scholar
  20. 20.
    Bech, V., Measles epidemics in Greenland, Am. J. Dis. Child. 103:252–253 (1962).PubMedGoogle Scholar
  21. 21.
    Hutckins, G., and C. Janeway, Observations on the relationship of measles and remissions in the nephrotic syndrome, Am. J. Dis. Child. 73:242–243 (1947).Google Scholar
  22. 22.
    Ooi, B. S., B. M. T. Chen, K. K. Tan, and O. T. Khoo, Longitudinal studies of lipoid nephrosis, Arch. Intern. Med. 130:883–886 (1972).PubMedCrossRefGoogle Scholar
  23. 23.
    Blumberg, R. W., and H. A. Cassady, Effect of measles on the nephrotic syndrome, Am. J. Dis. Child. 73:151–166 (1974).Google Scholar
  24. 24.
    Casali, P., G. P. A. Rice, and M. B. A. Oldstone, Viruses disrupt functions of human lymphocytes: Effects of measles virus and influenza virus on lymphocyte mediated killing and antibody production, J. Exp. Med. 159:1322–1337 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    Morely, D., Severe measles in the tropics. I and II. Br. Med. J. 1:297–300; 363–365 (1969).CrossRefGoogle Scholar
  26. 26.
    Norrby, E., Measles, in: Virology (B. N. Fields, ed.), pp. 1305–1321, Raven, New York (1985).Google Scholar
  27. 27.
    Tyrrell, D. L. J., and E. Norrby, Structural polypeptides of measles virus, J. Gen. Virol. 39:219–229 (1978).PubMedCrossRefGoogle Scholar
  28. 28.
    Baczko, K., M. Billeter, and V. ter Meulen, Purification and molecular weight determination of measles virus genomic RNA, J. Gen. Virol. 64:1409–1413 (1983).PubMedCrossRefGoogle Scholar
  29. 29.
    Rima, B. K., The proteins of morbillivirus, J. Gen. Virol. 64:1205–1219 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    Bellini, W. J., G. Englund, S. Rozenblatt, H. Arnheiter, and C. D. Richardson, Measles virus P gene codes for two proteins, J. Virol. 53:908–919 (1985).PubMedGoogle Scholar
  31. 31.
    Fujinami, R. S., and M. B. A. Oldstone, Alterations in the expression of measles virus polypeptides by antibody: Molecular events in antibody-induced antigenic modulation, J. Immunol. 125:78–85 (1980).PubMedGoogle Scholar
  32. 32.
    Fujinami, R. S., J. G. P. Sissons, and M. B. A. Oldstone, Immune reactive measles virus polypeptides on the cell surface: Turnover and relationship of the glycoproteins to each other and to HLA determinants, J. Immunol. 127:935–940 (1981).PubMedGoogle Scholar
  33. 33.
    Oldstone, M. B. A., R. S. Fujinami, A. Tishon, D. Finney, H. C. Powell, and P. W. Lampert, Mapping of the major histocompatibility complex and viral antigens on the plasma membrane of a measles virus infected cell, Virology 127:426–437 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    Sissons, J. G. P., M. B. A. Oldstone, and R. D. Shreiber, Antibody dependent activation of the alternative complement pathway by measles virus infected cells, Proc. Natl. Acad. Sci. USA 77:559–562 (1980).PubMedCrossRefGoogle Scholar
  35. 35.
    Sissons, J. G. P., R. D. Schreiber, L. H. Perrin, N. R. Cooper, M. B. A. Oldstone, and H. J. Muller-Eberhard, Lysis of measles virus infected cells by the purified cytolytic alternative complement pathway and antibody, J. Exp. Med. 150:445–454 (1979).CrossRefGoogle Scholar
  36. 36.
    Perrin, L. H., A. J. Tishon, and M. B. A. Oldstone, Immunological injury in measles virus infections. III. Presence and characterization of human cytotoxic lymphocytes, J. Immunol. 118:282–290 (1977).PubMedGoogle Scholar
  37. 37.
    Casali, P., and M. B. A. Oldstone, Mechanisms of killing of measles virus-infected cells by human lymphocytes: Interferon associated and unassociated cell-mediated cytotoxicity, Cell. Immunol. 70:330–344 (1982).PubMedCrossRefGoogle Scholar
  38. 38.
    Kreth, H. W., V. ter Meulen, and G. Eckert, Demonstration of HLA restricted killer cells in patients with acute measles, Med. Microb. Immunol. 165:203–214 (1979).CrossRefGoogle Scholar
  39. 39.
    Wright, L. L., and N. L. Levy, Generation on infected fibroblasts of human T and non T lymphocytes with specific cytotoxicity, influenced by histocompatibility, against measles virus infected cells, J. Immunol. 122:2379–2387 (1979).PubMedGoogle Scholar
  40. 40.
    Lucas, C. J., W. E. Biddison, D. L. Nelson, and S. Shaw, Killing of measles virus infected cells by human cytotoxic T cells, Infect. Immun. 38:226–232 (1982).PubMedGoogle Scholar
  41. 41.
    Jacobson, S., J. R. Richert, W. E. Biddison, A. Satinsky, R. J. Hartzman, and H. F. McFarland, Measles virus specific T4+ human cytotoxic T cell clones are restricted by class II HLA antigens, J. Immunol. 133:754–757 (1984).PubMedGoogle Scholar
  42. 42.
    Jacobson, S., G. T. Nepom, J. R. Richert, W. E. Biddison, and H. F. McFarland, Identification of specific HLA-DR2Ia molecules as a restriction element for measles virus-specific HLA class -restricted cytotoxic T cell clones, J. Exp. Med. 161:263–268 (1985).PubMedCrossRefGoogle Scholar
  43. 43.
    Bouteille, M., C. Fontaine, C. Vedrenne, and J. Delarue, Sur un cas encéphalite subaigue à inclusions: étude anatomo-clinique et ultrastructurale, Rev. Neurol. 113:454–458 (1965).Google Scholar
  44. 44.
    Connolly, J. H., I. V. Allen, L.J. Hurwitz, and J. H. D. Mollar, Measles-virus antibody and antigen in subacute sclerosing panencephalitis, Lancet 1:542–544 (1967).PubMedCrossRefGoogle Scholar
  45. 45.
    Payne, F. E., J. V. Baublis, and H. H. Itabashi, Isolation of measles virus from cell culture of brain from a patient with subacute sclerosing panencephalitis, N. Engl. J. Med. 281:585–589 (1969).PubMedCrossRefGoogle Scholar
  46. 46.
    Hall, W. W., and P. W. Choppin, Measles virus proteins in the brain tissue of patients with subacute sclerosing panencephalitis: Absence of the M protein, N. Engl. J. Med. 304:1152–1155 (1981).PubMedCrossRefGoogle Scholar
  47. 47.
    Fournier, J. G., M. Tardieu, P. Lebon, O. Robain, G. Ponsot, S. Rozenblatt, and M. Bouteille, Detection of measles virus RNA in lymphocytes from peripheral blood and brain perivascular infiltrates of patients with subacute sclerosing panencephalitis, N. Engl. J. Med. 313:910–915 (1985).PubMedCrossRefGoogle Scholar
  48. 48.
    Horta-Barbosa, L., R. Hamilton, B. Wittig, D. A. Fuccillo, J. L. Sever, and M. L. Vernon, Subacute sclerosing panencephalitis: Isolation of suppressed measles virus from lymphnode biopsies, Science 173:840–841 (1971).PubMedCrossRefGoogle Scholar
  49. 49.
    Wrzos, H. J., Z. Kulczycki, Z. Laskowski, D. Matacz, and W. J. Brzosko, Detection of measles virus antigen(s) in peripheral lymphocytes from patients with subacute sclerosing panencephalitis, Arch. Virol. 60:291–297 (1979).PubMedCrossRefGoogle Scholar
  50. 50.
    Robbins, S. J., H. Wrzos, A. L. Kline, R. B. Tenser, and F. Rapp, Rescue of cytopathic paramyxovirus from peripheral blood leukocytes in subacute sclerosing panencephalitis, J. Infect. Dis. 143:396–403 (1981).PubMedCrossRefGoogle Scholar
  51. 51.
    Norrby, E., Viral antibodies in multiple sclerosis, Prog. Med. Virol. 24:1–39 (1978).PubMedGoogle Scholar
  52. 52.
    ter Meulen, V., and W. W. Hall, Slow virus infection of the nervous system: Virological, immunological and pathogenetic considerations, J. Gen. Virol. 41:1–25 (1978).Google Scholar
  53. 53.
    Haase, A. T., P. Ventura, C. J. Gibbs, and W. W. Tourtellotte, Measles virus nucleotide sequences: Detection by hybridization in situ, Science 212:672–675 (1981).PubMedCrossRefGoogle Scholar
  54. 54.
    Norrby, E., T. A. Haase, K. P. Johnson, and C. Orvell, Persistent infections with paramyxovirus, in: Medical Virology (P. L. M. De la Maza and E. M. Peterson, eds.), pp. 217–236, Elsevier, New York (1982).Google Scholar
  55. 55.
    Rebel, A., M. Basle, A. Puoplard, S. Kouyoumdzian, R. Filmore, and A. Lepatezour, Viral antigens in osteoclasts from Paget’s disease of bone, Lancet 2:344–346 (1980).PubMedCrossRefGoogle Scholar
  56. 56.
    Basle, M. F., J. G. Fournier, S. Rozenblatt, A. Rebel, and M. Bouitelle, Measles virus RNA detected in Paget’s disease bone tissue by in situ hybridization, J. Gen. Virol. 67:907–913 (1986).PubMedCrossRefGoogle Scholar
  57. 57.
    Wesley, A., H. M. Coovadia, and L. Henderson, Immunological recovery after measles, Clin. Exp. Immunol. 32:540–544 (1978).PubMedGoogle Scholar
  58. 58.
    Arneborn, P., and G. Biberfeld, T-lymphocyte subpopulations in relation to immunosuppression in measles and varicella, Infect. Immun. 39:29–37 (1983).PubMedGoogle Scholar
  59. 59.
    Papp, K., Fixation du virus morbilleux aux leucocytes du sang des la période incubation de la maladie, Bull. Acad. Med. Paris 117:46–51 (1937).Google Scholar
  60. 60.
    Berg, R. B., and M. S. Rosenthal, Propagation of measles in suspensions of human and monkey leucocytes, Proc. Soc. Exp. Biol. Med. 106:581–585 (1961).Google Scholar
  61. 61.
    Gresser, I., and C. Chany, Isolation of measles virus from the washed leukocyte fraction of the blood, Proc. Soc. Exp. Biol. Med. 113:695–698 (1963).PubMedGoogle Scholar
  62. 62.
    Gresser, I., and D. L. Lang, Relationships between viruses and leukocytes. Prog. Med. Virol. 8:62–130 (1966).PubMedGoogle Scholar
  63. 63.
    Osunkoya, B. O., A. P. Cooke, O. Ayeni, and T. A. Adejumo, Studies on leukocyte cultures in measles. I. Lymphocyte transformation and giant cell formation in leuko cyte cultures from clinical cases of measles, Arch. Gesamte Virusforsch. 44:313–322 (1974).PubMedCrossRefGoogle Scholar
  64. 64.
    Sullivan, J. L., D. W. Barry, S. J. Lucas, and P. Albrecht, Measles infection of human mononuclear cells. I. Acute infection of peripheral blood lymphocytes and monocytes, J. Exp. Med. 142:773–784 (1975).PubMedCrossRefGoogle Scholar
  65. 65.
    Osunkoya, B. O., A. R. Cooke, O. Ayeni, and T. A. Adejumo, Studies on leukocyte cultures in measles. II. Detection of measles virus antigen in human leukocytes by immunofluorescence, Arch. Gesamte Virusforsch. 44:323–329 (1974).PubMedCrossRefGoogle Scholar
  66. 66.
    Valdimarsson, H., G. Agnarsdottir, and P. J. Lachmann, Measles virus receptors on human T lymphocytes, Nature (Lond.) 255:554–556 (1975).CrossRefGoogle Scholar
  67. 67.
    Joseph, B. S., P. W. Lampert, and M. B. A. Oldstone, Replication and persistence of measles virus in defined subpopulations of human leukocytes, J. Virol. 16:1638–1649 (1975).PubMedGoogle Scholar
  68. 68.
    Huddlestone, J. R., P. W. Lampert, and M. B. A. Oldstone, Virus-lymphocyte interactions: Infection of T. and TM subsets by measles virus, Clin. Immunol. Immunopathol. 15:502–509 (1980).PubMedCrossRefGoogle Scholar
  69. 69.
    Hyypiä, T., P. Korkiamaki, and R. Vainionpää, Replication of measles virus in human lymphocytes, J. Exp. Med. 161:1261–1271 (1985).PubMedCrossRefGoogle Scholar
  70. 70.
    Bloom, B. R., A. Senick, G. Stoner, G. Ju, M. Nowakowski, S. Kano, and L. Jimenez, Studies of the interactions between viruses and lymphocytes, Cold Spring Harbor Symp. Quant. Biol. 41:73–83 (1977).PubMedCrossRefGoogle Scholar
  71. 71.
    Lucas, C. J., J. C. Ubels-Postma, A. Rezee, and J. M. D. Galama, Activation of measles virus from silently infected human lymphocytes, J. Exp. Med. 148:940–952 (1978).PubMedCrossRefGoogle Scholar
  72. 72.
    Whittle, H. C A. Bradley-Moore, A. Fleming, and B. M. Greenwood, Effects of measles on the immune response of Nigerian children, Arch. Dis. Child. 48:753–756 (1973).PubMedCrossRefGoogle Scholar
  73. 73.
    Galama, J. M. D., J. Ubels-Postma, A. Vos, and C. J. Lucas, Measles virus inhibits acquisition of lymphocyte functions but not established effector functions, Cell. Immunol. 50:405–415 (1980).PubMedCrossRefGoogle Scholar
  74. 74.
    Hirano, T., T. Kuritani, T. Kishimoto, and Y. Yamamura, In vitro immune response of human peripheral blood lymphocytes. I. The mechanism(s) involved in T cell helper functions in the pokeweed mitogen-induced differentiation and proliferation of B cells, J. Immunol. 119:1235–1241 (1977).PubMedGoogle Scholar
  75. 75.
    Puck, J. M., and R. R. Rich, Regulatory interactions governing the proliferation of T cell subsets stimulated with pokeweed, J. Immunol. 132:1106–1112 (1984).PubMedGoogle Scholar
  76. 76.
    Pelton, B. K., W. Hylton, and A. Denman, Selective immunosuppressive effects of measles virus infection, Clin. Exp. Immunol. 47:19–26 (1982).PubMedGoogle Scholar
  77. 77.
    Casali, P., G. P. A. Rice, and M. B. A. Oldstone, Immune balance in the cytomegalovirus infected host, Birth Defects 20:149–159 (1984).PubMedGoogle Scholar
  78. 78.
    McChesney, M. B., R. S. Fujinami, P. W. Lampert, and M. B. A. Oldstone, Viruses disrupt functions of human lymphocytes. II. Measles virus suppresses antibody production by acting on B lymphocytes, J. Exp. Med. 163:1331–1336 (1986).PubMedGoogle Scholar
  79. 79.
    McChesney, M. B., R. S. Fujinami, and M. B. A. Oldstone, Virus induced suppression of immunoglobulin synthesis during measles virus infection is due to a direct effect on B lymphocytes, in: The Biology of Negative Strand Viruses (B. Mahy and D. Kolakofsky, eds.), pp. 298–303, Elsevier Science, New York (1987).Google Scholar
  80. 80.
    Schimpl, A., and E. Wecker, Replacement of T-cell function by a T-cell product, Nature (Lond.) 237:15–17 (1972).Google Scholar
  81. 81.
    Howard, M., and W. E. Paul, Regulation of B-cell growth and differentiation by soluble factors, Annu. Rev. Immunol. 1:307–334 (1984).CrossRefGoogle Scholar
  82. 82.
    Tilden, A. B., T. Abo, and C. M. Balch, Suppressor cell function of human granular lymphocytes identified by the HNK-1 (Leu 7) monoclonal antibody, J. Immunol. 130:1171–1175 (1983).PubMedGoogle Scholar
  83. 83.
    Kehrl, J. H., A. Muraguchi,J. L. Butler, R. J. M. Falkoff, and A. S. Fauci, Human B cell activation, proliferation and differentiation, Immunol. Rev. 78:75–96 (1984).PubMedCrossRefGoogle Scholar
  84. 84.
    Casali, P., J. G. P. Sissons, M. J. Buchmeier, and M. B. A. Oldstone, In vitro generation of human cytotoxic lymphocytes by virus: Viral glycoproteins induce nonspecific cell-mediated cytotoxicity without release of interferon, J. Exp. Med. 154:840–855 (1981).PubMedCrossRefGoogle Scholar
  85. 85.
    Jacobson, S., and H. F. McFarland, Measles virus persistence in human lymphocytes: A role for virus induced interferon, J. Gen. Virol. 63:351–357 (1982).PubMedCrossRefGoogle Scholar
  86. 86.
    Gresser, I., M. C. Tovey, M. T. Bandu, C. Maury, and D. Brontoy-Bogye, Role of interferon in the pathogenesis of virus disease in mice as demonstrated by the use of an anti-interferon serum. II. Study with herpes simplex, Moloney sarcoma, vesicular stomatitis, Newcastle disease and influenza viruses, J. Exp. Med. 144:1316–1323 (1976).PubMedCrossRefGoogle Scholar
  87. 87.
    Stewart, W. E. II, Mechanisms of antiviral actions in interferons, in: The Interferon System (W. E. Stewart, ed.), pp. 196–222, Springer-Verlag, New York (1979).Google Scholar
  88. 88.
    Kadish, A. S., F. A. Tansey, G. S. M. Yu, A. T. Doyle, and B. R. Bloom, Interferon as a mediator of human lymphocyte suppression, J. Exp. Med. 151:637–650 (1980).PubMedCrossRefGoogle Scholar
  89. 89.
    Harfast, B., J. R. Huddlestone, P. Casali, T. Merigan, and M. B. A. Oldstone, Interferon acts directly on human B lymphocytes to modulate immunoglobulin synthesis, J. Immunol. 127:2146–2150 (1981).PubMedGoogle Scholar
  90. 90.
    Hirsch, R. L., F. Mokhtarian, D. E. Griffin, B. R. Brooks, J. Hess, and R. T. Johnson, Measles virus vaccination of measles seropositive individuals suppresses lymphocyte proliferation and chemotactic factor production, Clin. Immunol. Immunopathol. 21:341 -350 (1981).PubMedCrossRefGoogle Scholar
  91. 91.
    Rinehart, J. J.,M. Orser, and M. E. Kaplan, Human monocyte and macrophage modulation of lymphocyte proliferation, Cell. Immunol. 44:131 -143 (1979).PubMedCrossRefGoogle Scholar
  92. 92.
    von Pirquet, C., Das Verhalten der kutanen Tuberculin-Reaktion während der Masern, Dtsch. Med. Wochenschr. 34:1297–1300 (1908).CrossRefGoogle Scholar
  93. 93.
    Anderson, R., A. R. Rabson, R. Sher, H. J. Koornhof, and D. Bact, Defective neutrophil motility in children with measles, J. Pediatr. 89:27–32 (1976).PubMedCrossRefGoogle Scholar
  94. 94.
    Smithwick, E. M., and S. Berkovich, In vitro suppression of the lymphocyte response to tuberculin by live measles virus, Proc. Soc. Exp. Biol. Med. 123:276–278 (1966).PubMedGoogle Scholar
  95. 95.
    Finkel, A., and P. B. Dent, Abnormalities in lymphocyte proliferation in classical and atypical measles infection, Cell. Immunol. 6:41–48 (1973).PubMedCrossRefGoogle Scholar
  96. 96.
    Zweiman, B., D. Pappagianis, H. Maibach, and E. A. Hildreth, Effect of measles immunization on tuberculin hypersensitivity and in vitro lymphocyte reactivity, Int. Arch. Allergy Appl. Immunol. 40:834–841 (1971).PubMedCrossRefGoogle Scholar
  97. 97.
    Zweiman, B., and M. Miller, Effects of non-viable measles virus on proliferating human lymphocytes, Int. Arch. Allergy 46:822–833 (1974).PubMedCrossRefGoogle Scholar
  98. 98.
    Sullivan, J. L., D. W. Barry, P. Albrecht, and S. J. Lucas, Inhibition of lymphocyte stimulation by measles virus, J. Immunol. 114:1458–1461 (1975).PubMedGoogle Scholar
  99. 99.
    Lucas, C. J., J. M. D. Galama, and J. Ubels-Postma, Measles virus-induced suppression of lymphocyte reactivity in vitro, Cell. Immunol. 32:70–85 (1977).CrossRefGoogle Scholar
  100. 100.
    Lucas, C. J., J. Ubels-Postma, J. M. D. Galama, and A. Rezee, Studies on the mechanism of measles-induced suppression of lymphocyte functions in vitro. Lack of a role for interferon and monocytes, Cell. Immunol. 37:448–548 (1978).PubMedCrossRefGoogle Scholar
  101. 101.
    Zweiman, B., R. P. Lisak, D. Waters, and H. Koprowski, Effects of purified measles virus components on proliferating human lymphocytes, Cell. Immunol. 47:241–247 (1979).PubMedCrossRefGoogle Scholar
  102. 102.
    Jacobson, S., and H. F. McFarland, Measles virus infection of human peripheral blood lymphocytes: Importance of the OKT4+ T-cell subset, in: Non-segmented Negative Strand Viruses. Paramyxoviruses and Rhabdoviruses (D. H. L. Bishop and R. W. Compans, eds.), pp. 435–442, Academic, New York (1984).Google Scholar
  103. 103.
    Smith, K. A., and F. W. Ruscetti, T growth factor and the culture of cloned functional T cells, Adv. Immunol 31:137–175 (1981).PubMedCrossRefGoogle Scholar
  104. 104.
    Luger, T. A., J. S. Smolen, T. M. Chused, A. D. Steinberg, and J. J. Oppenheim, Human lymphocytes with either the OKT4 or OKT8 phenotype produce interleuken 2 in culture, J. Clin. Invest. 70:470–473 (1982).PubMedCrossRefGoogle Scholar
  105. 105.
    Wainberg, M. A., S. Vydelingum, and R. G. Margolese, Viral inhibition of lymphocyte mitogenesis: Interference with the synthesis of functionally active T cell growth factor (TCGF) activity and reversal of inhibition by the addition of the same, J. Immunol. 130:2372–2378 (1983).PubMedGoogle Scholar
  106. 106.
    Joffe, M. I., and A. R. Rabson, Defective helper factor (LMF) production in patients with acute measles infection, Clin. Immunol. Immunopathol. 20:215–223 (1981).PubMedCrossRefGoogle Scholar
  107. 107.
    Borysiewicz, L. K., P. Casali, B. Rogers, S. Morris, and J. G. P. Sissons, The immunosup pressive effects of measles virus on T cell function. Failure to affect IL-2 release or cytotoxic T cell activity in vitro, Clin. Exp. Immunol. 59:29–36 (1985).PubMedGoogle Scholar
  108. 108.
    Cooper, N. R., and M. R. Welsh, Antibody and complement dependent viral neutralization, Spnger Semin. Immunopathol. 2:285–310 (1979).Google Scholar
  109. 109.
    Trinchieri, G., and B. Perussia, Biology of disease: Human natural killer cells: Biologic and pathologic aspects, Lab. Invest. 50:489–513 (1984).PubMedGoogle Scholar
  110. 110.
    Casali, P., and G. Trinchieri, Natural killer cells in viral infection, in: Concepts in Viral Pathogenesis (A. L. Notkins and M. B. A. Oldstone, eds., pp. 12–19, Springer-Verlag, New York (1984).Google Scholar
  111. 111.
    Trinchieri, G., and B. Perussia, Immune (7) interferon: A pleiotropic lymphokine with multiple effects on cells of the adaptive and nonadaptive immune system, Immunol. Today 6:131–136 (1985).CrossRefGoogle Scholar
  112. 112.
    Casali, P., J. G. P. Sissons, R. S. Fujinami, and M. B. A. Oldstone, Purification of measles virus glycoproteins and their integration into artificial lipid membranes, /. Gen. Virol. 54:161–171 (1981).CrossRefGoogle Scholar
  113. 113.
    Perussia, B., S. Starr, S. Abraham, V. Fanning, and G. Trinchieri, Human natural killer cells analysed by B73.1, a monoclonal antibody blocking Fc-receptor function. I. Characterization of the lymphocyte subset reactive with B73.1, J. Immunol. 130:2133–2141 (1983).PubMedGoogle Scholar
  114. 114.
    Rice, G. P. A., R. D. Schrier, P. Casali, and M. B. A. Oldstone, Cytomegalovirus and measles virus in vitro models of virus mediated immunosuppression, in: Viral Mechanisms of Immunosuppression (N. Gilmore and M. Wainberg, eds.), pp. 15–29, Liss, New York (1985).Google Scholar
  115. 115.
    Podack, E. R., and G. Dennert, The molecular mechanisms of lymphocyte mediated tumor cell lysis, Immunol. Today 21:21–27 (1985).CrossRefGoogle Scholar
  116. 116.
    McFarland, H. F., The effect of measles virus infection on T and B lymphocytes in the mouse. I. Suppression of helper cell activity, J. Immunol. 113:1978–1983 (1974).PubMedGoogle Scholar
  117. 117.
    Lachmann, P. J., Immunopathology of measles, Proc. R. Soc. Med. 67:1120–1122 (1974).PubMedGoogle Scholar
  118. 118.
    Lachmann, P., and D. K. Peters (eds.), Clinical Aspects of Immunology ,Vol. II, Blackwell Scientific Publications, Oxford (1982).Google Scholar
  119. 119.
    Jacobson, S., M. Flerlage, and H. F. McFarland, Impaired measles virus specific cytotoxic T cell responses in multiple sclerosis, J. Exp. Med. 162:839–850 (1985).PubMedCrossRefGoogle Scholar
  120. 120.
    Lampert, P., B. S. Joseph, and M. B. A. Oldstone, Antibody-induced capping of measles virus antigens on plasma membrane studied by electron microscopy, J. Virol. 15:1248–1255 (1975).PubMedGoogle Scholar
  121. 121.
    Fujinami, R. S., and M. B. A. Oldstone, Failure to cleave measles virus fusion protein in lymphoid cells: A possible mechanism for viral persistence in lymphocytes, J. Exp. Med. 154:1489–1499 (1981).PubMedCrossRefGoogle Scholar
  122. 122.
    Weschler, S. L., and Fields, B. N., Differences between intracellular polypeptides of measles and subacute sclerosing panencephalitis virus, Nature (Lond.) 272:458–460 (1978).CrossRefGoogle Scholar
  123. 123.
    Choppin, P. W., C. D. Richardson, D. C. Merz, W. W. Hall, and H. Scheid, The functions and inhibition of the membrane glycoproteins of paramyxoviruses and myxoviruses and the role of measles virus M protein in subacute sclerosing panencephalitis, J. Infect. Dis. 143:352–363 (1981).PubMedCrossRefGoogle Scholar
  124. 124.
    Carter, M. J., M. M. Willcocks, and V. ter Meulen, Defective translation of measles matrix protein in subacute sclerosing panencephalitis cell line, Nature (Lond.) 305:153– 155 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Paolo Casali
    • 1
  • Minoru Nakamura
    • 1
  • Michael B. McChesney
    • 2
  1. 1.Laboratory of Oral Medicine, National Institute of Dental ResearchNational Institutes of HealthBethesdaUSA
  2. 2.Scripps Clinic and Research FoundationLa JollaUSA

Personalised recommendations