• Raija Vainionpää
  • Timo Hyypiä
Part of the Infectious agents and pathogenesis book series


The family Paramyxoviridae contains three genera: paramyxoviruses, morbilliviruses, and pneumoviruses(1) (Table I). They infect a large variety of mammals and birds, but the strains are very host specific. Classification in separate genera is based on differences in hemagglutinating and neuramini dase activities, as well as in morphology. The Paramyxovirus genus includes the human pathogens, mumps virus, parainfluenza virus types 1–4, and several animal pathogens, of which Sendai virus of mice, simian virus 5 (SV5) of monkey, and Newcastle disease virus (NDV) of birds are the best characterized. The genus Morbillivirus includes measles virus (MV) and three nonhuman viruses, canine distemper virus (CDV), rinderpest virus (RPV), and peste des petits ruminants virus (PPRV). Measles virus is not included in this review, because it has been presented in Chapter 18. Respiratory syncytial virus (RSV), bovine respiratory syncytial virus, and pneumonia virus of mice are members of the genus Pneumovirus. Throughout this chapter, the term paramyxoviruses) is used to describe the whole family Paramyxoviridae.


Respiratory Syncytial Virus Newcastle Disease Virus Measle Virus Respiratory Syncytial Virus Infection Canine Distemper Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kingsbury, D. W., M. A. Bratt, P. W. Choppin, R. P. Hanson, Y. Hosaka, V. ter Meulen, E. Norrby, W. Plowright, R. Rott, and W. H. Wunner, Paramyxoviridae, Intervirology 10:137–151 (1983).CrossRefGoogle Scholar
  2. 2.
    Portner, A., The HN glycoprotein of Sendai virus: Analysis of site(s) involved in hemag-glutinating and neuraminidase activities, Virology 115:375–384 (1981).PubMedCrossRefGoogle Scholar
  3. 3.
    Yewdell, J., and W. Gerhard, Delineation of four antigenic sites on a paramyxovirus glycoprotein via which monoclonal antibodies mediate distinct antiviral activities, J. Immu nol. 128:2670–2675 (1982).Google Scholar
  4. 4.
    Örvell, C., and E. Norrby, Immunologic properties of purified Sendai virus glycoproteins, J. Immunol. 119:1882–1887 (1977).PubMedGoogle Scholar
  5. 5.
    Blumberg, B., C. Giorgi, L. Roux, R. Raju, P. Dowling, A. Chollet, and D. Kolakofsky. Sequence determination of the Sendai virus HN gene and its comparison to the influenza virus glycoproteins, Cell 41:269–278 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    Hiebert, S. W., R. G. Paterson, and R. A. Lamb, Hemagglutinin neuraminidase protein of the paramyxovirus simian virus 5: Nucleotide sequence of the mRNA predicts an N-terminal membrane anchor, J. Virol. 53:1–6 (1985).Google Scholar
  7. 7.
    Örvell, C., and M. Grandien, The effects of monoclonal antibodies on biologic activities of structural proteins of Sendai virus, J. Immunol. 129:2779–2787 (1982).PubMedGoogle Scholar
  8. 8.
    Wertz, G. W., P. L. Collins, Y. Huang, C. Gruber, S. Levine, and L. A. Ball, Nucleotide sequence of the G protein gene of human respiratory syncytial reveals an unusual type of viral membrane protein, Proc. Natl. Acad. Sci. USA 82:4075–4079 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    Elango, N., J. E. Copligan, R. C. Jambou, and S. Venkatesan, Human parainfluenza type 3 virus hemagglutinin-neuraminidase glycoprotein: Nucleotide sequence of mRNA and limited amino acid sequence of the purified protein, J. Virol. 57:481–489 (1986).PubMedGoogle Scholar
  10. 10.
    Markwell, M. K., and C. F. Fox, Protein-protein interactions within paramyxoviruses identified by native disulfide bonding or reversible chemical cross-linking, J. Virol. 33:152–166 (1980).PubMedGoogle Scholar
  11. 11.
    Löve, A., R. Rydbeck, G. Utter, C. Örvell, K. Kristensson, and E. Norrby. Monoclonal antibodies against the fusion protein are protective in necrotizing mumps meningoen cephalitis, J. Virol. 58:220–222 (1986).PubMedGoogle Scholar
  12. 12.
    Merz, D. C., A. C. Server, M. N. Waxham, and J. S. Wolinsky, Biosynthesis of mumps virus F glycoprotein: Non-fusing strains efficiently cleave the F glycoprotein precursor, J. Gen. Virol. 64:1457–1467 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    Paterson, R. G., T. J. R. Harris, and R. A. Lamb, Fusion protein of the paramyxovirus SV5: Nucleotide sequence of mRNA predicts a highly hydrophobic glycoprotein, Proc. Natl. Acad. Sci. USA 81:6706–6710 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    Jambou, R. C., N. Elango, and S. Venkatesan, Proteins associated with human parainfluenza virus type 3, J. Virol. 56:298–302 (1985).PubMedGoogle Scholar
  15. 15.
    Rozenblatt, S., O. Eizenberg, R. Ben-Levy, V. Lavie, and W. J. Bellini, Sequence homology within the morbilliviruses, J. Virol. 53:684–690 (1985).PubMedGoogle Scholar
  16. 16.
    Galinsky, M. S., M. A. Mink, D. M. Lambert, S. L. Wechsler, and M. W. Pons, Molecular cloning and sequence analysis of the human parainfluenza 3 virus RNA encoding the nucleocapsid protein, Virology 149:139–151 (1986).CrossRefGoogle Scholar
  17. 17.
    Buetti, E., and P. V. Choppin, The transcriptase complex of the Paramyxovirus SV5, Virology 82:493–508 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    Mottet, G., A. Portner, and L. Roux, Drastic immunoreactivity changes between the immature and mature forms of the Sendai virus HN and Fo glycoproteins, J. Virol.. 59:132–141 (1986).PubMedGoogle Scholar
  19. 19.
    Waxham, M. N., D. C. Merz, and J. S. Wolinsky, Intracellular maturation of mumps virus hemagglutinin-neuraminidase glycoprotein: Conformational changes detected with monoclonal antibodies, J. Virol. 59:392–400 (1986).PubMedGoogle Scholar
  20. 20.
    Prince, G. A., A. B. Jenson, R. L. Horswood, E. Camargo, and R. M. Chanock. The pathogenesis of respiratory syncytial virus infection in cotton rats, Am. J. Pathol. 93:771 -783 (1978).PubMedGoogle Scholar
  21. 21.
    Prince, G. A., R. L. Horswood, E. Camargo, D. Koening, and R. M. Chanock. Mechanism of immunity to respiratory syncytial virus in cotton rats, Infect. Immun. 42:81–87 (1983).PubMedGoogle Scholar
  22. 22.
    Prince, G. A., R. L. Horswood, and R. M. Chanock, Quantitative aspects of passive immunity to respiratory syncytial virus infection in infant cotton rats, J. Virol. 55:517–520 (1985).PubMedGoogle Scholar
  23. 23.
    Walsh, E. E., J. J. Schlesinger, and M. W. Brandriss, Protection from respiratory syncytial virus infection in cotton rats by passive transfer of monoclonal antibodies, Infect. Immun. 43:765–758 (1984).Google Scholar
  24. 24.
    Yanagihara, R. and K. Mcintosh. Secretory immunological response in infants and children to parainfluenza virus types 1 and 2, Infect. Immun. 30:23–28 (1980).PubMedGoogle Scholar
  25. 25.
    Mcintosh, K., H. B. Masters, I. Orr, R. K. Chao, and R. M. Barkin, The immunologic response to infection with respiratory syncytial virus in infants, J. Infect. Dis. 138:24–32 (1978).PubMedCrossRefGoogle Scholar
  26. 26.
    Kaul, T. N., R. C. Welliver, and P. L. Ogra, Appearance of complement components and immunoglobulins on nasopharyngeal epithelial cells following naturally acquired infec tion with respiratory syncytial virus, J. Med. Virol. 9:149–158 (1982).PubMedCrossRefGoogle Scholar
  27. 27.
    Mcintosh, K., Interferon in nasal secretions from infants with viral respiratory tract infections, J. Pediatr. 93:33–36 (1978).PubMedGoogle Scholar
  28. 28.
    Hall, C. B., R. G. Douglas, R. L. Simons, and J. M. Geiman, Interferon production in children with respiratory syncytial, influenza, and parainfluenza virus infections, J. Pediatr. 93:28–32 (1978).PubMedCrossRefGoogle Scholar
  29. 29.
    Meurman, O., O. Ruuskanen, H. Sarkkinen, P. Hänninen, and P. Halonen, Immunoglobulin class-specific antibody response in respiratory syncytial virus infection measured by enzyme immunoassay, J. Med. Virol. 14:67–72 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    Welliver, R. C., T. N. Kaul, T. I. Putnam, M. Sun, B. S. Riddlesberger, and P. L. Ogra, The antibody response to primary and secondary infection with respiratory syncytial virus: Kinetics of class-specific responses, J. Pediatr. 96:808–813 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    Scott, R., M. Scott, and G. L. Toms, Cellular and antibody response to respiratory syncytial (RS) virus in human colostrum, maternal blood, and cord blood, J. Med. Virol. 8:55– 66 (1981).PubMedCrossRefGoogle Scholar
  32. 32.
    Vainionpää, R., O. Meurman, and H. Sarkkinen, Antibody response to respiratory syncytial virus structural proteins in children with acute respiratory syncytial virus infection, /. Virol. 53:976–979 (1985).PubMedGoogle Scholar
  33. 33.
    Ward, K. A., P. R. Lambden, M. M. Ogilvie, and P. J. Watt. Antibodies to respiratory syncytial virus polypeptides and their significance in human infection, /. Gen. Virol. 64:1867–1876 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    Kasel, J. A., A. L. Fran, W. A. Keitel, L. H. Taber, and W. P. Glezen, Acquistion of serum antibodies to specific viral glycoproteins of parainfluenza virus 3 in children,J. Virol. 52:828–832 (1984).PubMedGoogle Scholar
  35. 35.
    Fernald, G. W., J. R. Almond, and F. W. Henderson. Cellular and humoral immunity in recurrent respiratory syncytial virus infections, Pediatr. Res. 17:753–758 (1983).PubMedCrossRefGoogle Scholar
  36. 36.
    Cranage, M. P., and P. S. Gardner, Systemic cell-mediated and antibody responses in infants with respiratory syncytial virus infections, J. Med. Virol. 5:161–170 (1980).PubMedCrossRefGoogle Scholar
  37. 37.
    Welliver, R. C., T. N. Kaul, M. Sun, and P. L. Ogra, Defective regulation of immune responses in respiratory syncytial virus infection, J. Immunol. 133:1925–1930 (1984).PubMedGoogle Scholar
  38. 38.
    Domurat, F., N. J. Roberts, Jr, E. E. Walsh, and R. Dagan, Respiratory syncytial virus infection of human mononuclear leukocytes in vitro and in vivo, J. Infect. Dis. 152:895–902 (1985).PubMedCrossRefGoogle Scholar
  39. 39.
    Kupers, T. A., J. M. Petrich, A. W. Holloway, and J. W. Geme, Jr., Depression of tuberculin delayed hypersensitivity by live attenuated mumps virus, J. Pediatr. 76:716–721 (1970).PubMedCrossRefGoogle Scholar
  40. 40.
    Hall, C. B., and F. S. Kantor. Depression of established delayed hypersensitivity by mumps virus, J. Immunol. 108:81–85 (1972).PubMedGoogle Scholar
  41. 41.
    Chiba, Y., K. Horino, M. Umetsu, Y. Wataya, S. Chiba, and T. Nakao, Virus excretion and antibody response in saliva in natural mumps, Tohoku J. Exp. Med. 111:229–238 (1973).PubMedCrossRefGoogle Scholar
  42. 42.
    Ukkonen, P., M-L. Granström, and K. Penttinen, Mumps-specific immunoglobulin M and G antibodies in natural mumps infection as measured by enzyme-linked immunosorbent assay, J. Med. Virol. 8:131–142 (1981).PubMedGoogle Scholar
  43. 43.
    Ukkonen, P., M-L. Granström, J. Räsänen, E-M. Salonen, and K. Penttinen, Local production of mumps IgG and IgM antibodies in the cerebrospinal fluid of meningitis patients, J. Med. Virol. 8:257–265 (1981).PubMedCrossRefGoogle Scholar
  44. 44.
    Fryden, A., H. Link, and E. Norrby, Cerebrospinal fluid and serum immunoglobulins and antibody titers in mumps meningitis and aseptic meningitis of other etiology, Infect. Immun. 21:852–861 (1978).PubMedGoogle Scholar
  45. 45.
    Copelovici, Y., D. Strulovici, A. L. Cristea, V. Tudor, and V. Armasu, Data on the efficiency of specific anti mumps immunoglobulins in the prevention of mumps and of its complications, Rev. Roum. Med. Virol. 30:171–177 (1979).Google Scholar
  46. 46.
    Ilonen, J., Lymphocyte blast transformation response of seropositive and seroegative subjects to herpes simplex, rubella, mumps and measles virus antigens, Acta Pathol. Micro biol. Scand. Sect. C 87:151–157 (1979).Google Scholar
  47. 47.
    Ilonen, J., A. Salmi, K. Penttinen, and E. Herva, Lymphocyte blast transformation and antibody response after vaccination with inactivated mumps virus vaccine, Acta Pathol. Microbiol. Scand. Sect. C 89:303–309 (1981).Google Scholar
  48. 48.
    Fryden, A., H. Link, and E. Möller, Demonstration of cerebrospinal fluid lymphocytes sensitized against virus antigens in mumps meningitis, Acta Neurol. Scand. 57:396–404 (1978).PubMedCrossRefGoogle Scholar
  49. 49.
    Kreth, H. W., L. Kress, H. G. Kress, H. F. Ott, and G. Eckert, Demonstration of primary cytotoxic T cells in venous blood and cerebrospinal fluid of children with mumps meningitis, J. Immunol. 128:2411–2415 (1982).PubMedGoogle Scholar
  50. 50.
    Kress, H. G., and H. W. Kreth, HLA restriction of secondary mumps-specific cytotoxic T lymphocytes, J. Immunol. 129:844–849 (1982).PubMedGoogle Scholar
  51. 51.
    Tsutsumi, H., Y. Chiba, W. Abo, S. Chiba, and T. Nakao, T-cell-mediated cytotoxic response to mumps virus in humans, Infect. Immun. 30:129–134 (1980).PubMedGoogle Scholar
  52. 52.
    Roberts, Jr., N. J., A. H. Prill, and T. N. Mann, Interleukin 1 and interleukin 1 inhibitor production by human macrophages exposed to influenza virus or respiratory syncytial virus, J. Exp. Med. 163:511–519 (1986).PubMedCrossRefGoogle Scholar
  53. 53.
    Borysiewicz, L. K., P. Casali, B. Rogers, S. Morris, and J. G. P. Sissons, The immunosuppressive effects of measles virus on T cell function-Failure to affect IL-2 release of cytotoxic T cell activity in vitro, Clin. Exp. Immunol. 59:29–36 (1985).PubMedGoogle Scholar
  54. 54.
    Roberts, N. J., Jr., Different effects of influenza virus, respiratory syncytial virus, and Sendai virus on human lymphocytes and macrophages, Infect. Immun. 35:1142–1146 (1982).PubMedGoogle Scholar
  55. 55.
    Nakayama, T., Immune-specific production of gamma interferon in human lymphocyte cultures in response to mumps virus, Infect. Immun. 40:486–492 (1983).PubMedGoogle Scholar
  56. 56.
    Dunnick, J. K., and G. J. Galasso, Clinical trials with exogenous interferon: Summary of a meeting, J. Infect. Dis. 139:109–123 (1979).PubMedCrossRefGoogle Scholar
  57. 57.
    Aderka, D., H. Holtmann, L. Toker, T. Hahn, D. Wallach. Tumor necrosis factor induction by Sendai virus, J. Immunol. 136:2938–2942 (1986).PubMedGoogle Scholar
  58. 58.
    Brenan, M., and R. M. Zinkernagel, Influence of one virus infection on a second concurrent primary in vivo antiviral cytotoxic T-cell response, Infect. Immun. 41:470–475 (1983).PubMedGoogle Scholar
  59. 59.
    Scott, R., M. O. De Landazuri, P. S. Gardner, and J. J. T. Owen, Human antibody-dependent cell-mediated cytotoxicity against target cells infected with respiratory syncytial virus, Clin. Exp. Immunol. 28:19–26 (1977).PubMedGoogle Scholar
  60. 60.
    Cranage, M. P., P. S. Gardner, and K. Mcintosh, In vitro cell-dependent lysis of respiratory syncytial virus-infected cells mediated by antibody from local respiratory secretions, Clin. Exp. Immunol. 43:28–35 (1981).PubMedGoogle Scholar
  61. 61.
    Kaul, T. N., R. C. Welliver, and P. L. Ogra, Development of antibody-dependent cell-mediated cytotoxicity in the respiratory tract after natural infection with respiratory syncytial virus, Infect. Immun. 37:492–498 (1982).PubMedGoogle Scholar
  62. 62.
    Meguro, H., M. Kervina, and P. F. Wright, Antibody-dependent cell-mediated cytotoxicity against cells infected with respiratory syncytial virus: Characterization of in vitro and in vivo properties, J. Immunol. 122:2521–2526 (1979).PubMedGoogle Scholar
  63. 63.
    Alsheikhly, A. R., B. Wahlin, T. Andersson, and P. Perlmann, Virus-induced enhancement of lymphocyte-mediated antibody-dependent cytotoxicity (ADCC) in vitro, J. Immunol. 132:2760–2766 (1984).PubMedGoogle Scholar
  64. 64.
    Alsheikhly, A., C. Örvell, B. Härfast, T. Andersson, P. Perlmann, and E. Norrby, Sendai-virus-induced cell-mediated cytotoxicity in vitro, Scand. J. Immunol. 17:129–138 (1983).PubMedCrossRefGoogle Scholar
  65. 65.
    Alsheikhly, A-R, T. Andersson, and P. Perlmann, Virus-mediated induction in human lymphocytes of antibody-independent cytotoxicity (ADCC) against natural killer-resistant tumor target cells, Cell Immunol 88:511–520 (1984).PubMedCrossRefGoogle Scholar
  66. 66.
    Alsheikhly, A. R., C. Örvell, T. Andersson, and P. Perlmann, The role of serologically defined epitopes on mumps virus HN-glycoprotein in the induction of virus-dependent cell-mediated cytotoxicity, Scand. J. Immunol. 22:529–538 (1985).PubMedCrossRefGoogle Scholar
  67. 67.
    Härfast, B., T. Andersson, V. Stejskal, and P. Perlmann, Interactions between human lymphocytes and paramyxovirus-infected cells: Adsorption and cytotoxicity, J. Immunol. 118:1132–1137 (1977).PubMedGoogle Scholar
  68. 68.
    Welsh, R., and L. A. Hallenbek, Effect of virus infections on target cell susceptibility to natural killer cell-mediated lysis, J. Immunol. 124:2491–2497 (1980).PubMedGoogle Scholar
  69. 69.
    Andersson, L. J., J. C. Hierholzer, C. Tsou, R. M. Hendry, B. F. Fernie, Y. Stone, and K. Mcintosh. Antigenic characterization of respiratory syncytial virus strains with mono clonal antibodies, J. Infect. Dis. 151:626–633 (1985).CrossRefGoogle Scholar
  70. 70.
    Mufson, M. A., C. Örvell, B. Rafnar, and E. Norrby, Two distinct subtypes of human respiratory syncytial virus, J. Gen. Virol. 66:2111–2124 (1985).PubMedCrossRefGoogle Scholar
  71. 71.
    Welliver, R. C., D. T. Wong, M. Sun, B. S. Middleton, Jr., R. S. Vaughan, and P. L. Ogra, The development of respiratory syncytial virus-specific IgE and the release of histamine in nasopharyngeal secretions after incubation, N. Engl. J. Med. 15:841–846 (1981).CrossRefGoogle Scholar
  72. 72.
    Kim, H. W., J. G. Canchola, C. D. Brandt, G. Pyles, R. M. Chanock, K. Jensen, and R. H. Parrott, Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine, Am. J. Epidemiol. 89:422–434 (1969).PubMedGoogle Scholar
  73. 73.
    Fulginiti, V. A., J. J. Eller, O. F. Sieber, J. W. Joyner, M. Minamitani, and G. Meiklejohn, Respiratory virus immunization. I. A. field trial of two inactivated respiratoy virus vaccines: An aqueous trivalent parainfluenza virus vaccine and an alumprecipitated respiratory syncytial virus vaccine, Am. J. Epidemiol. 89:435–448 (1967).Google Scholar
  74. 74.
    Chin, J., R. L. Magoffin, L. A. Shearer, J. H. Schieble, and E. H. Lennette, Field evaluation of a respiratory syncytial virus vaccine and a trivalent parainfluenza virus vaccine in a pediatric population, Am. J. Epidemiol. 89:449–463 (1969).PubMedGoogle Scholar
  75. 75.
    Penttinen, K., E-P. Helle, and E. Norrby, Differences in antibody response induced by formaldehyde inactivated and live mumps vaccines, Dev. Biol. St. 43:265–268 (1979).Google Scholar
  76. 76.
    Murphy, B. R., G. A. Prince, E. E. Walsh, H. W. Kim, R. H. Parrott, V. G. Hemming, W.J. Rodriguez, and R. M. Chanock, Dissociation between serum neutralizing and glycoprotein antibody responses of infants and children who received inactivated respiratory syncytial virus vaccine, J. Clin. Microbiol. 24:197–202 (1986).PubMedGoogle Scholar
  77. 77.
    Norrby, E., G. Enders-Ruckle, and V. ter Meulen, Differences in the appearance of antibodies to structural components of measles virus after immunization with inactivated and live virus, J. Infect. Dis. 132:262–269 (1975).PubMedCrossRefGoogle Scholar
  78. 78.
    Prince, G. A., A. B. Jenson, V. G. Hemming, B. R. Murphy, E. E. Walsh, R. L. Horswood, and R. M. Chanock, Enchancement of respiratory syncytial virus pulmonary pathology in cotton rats by prior intramuscular inoculation of formalin-inactivated virus, /. Virol. 57:721–728 (1986).Google Scholar
  79. 79.
    Elango, N., G. A. Prince, B. R. Murphy, S. Venkatesan, R. M. Chanock, and B. Moss, Resistance to human respiratory syncytial virus (RSV) infection induced by immunization of cotton rats with a recombinant vaccinia virus expressing the RSV G glycoprotein, Proc. Natl. Acad. Sci. USA 83:1906–1910 (1986).PubMedCrossRefGoogle Scholar
  80. 80.
    Appel, M. J. G., Reversion to virulence of attenuated canine distemper virus in vivo and in vitro, J. Gen. Virol. 41:385–393 (1978).CrossRefGoogle Scholar
  81. 81.
    Rossiter, P. B., and R. C. Wardley, The differential growth of virulent and avirulent strains of rinderpest virus in bovine lymphocytes and macrophages, J. Gen. Virol. 66:969– 975 (1985).PubMedCrossRefGoogle Scholar
  82. 82.
    Due-Nguyen, H., and W. Henle, Replication of mumps virus in human leukocyte cultures, J. Bacteol. 92:258–265 (1966).Google Scholar
  83. 83.
    Fleischer, B., and H. W. Kreth, Mumps virus replication in human lymphoid cell lines and in peripheral blood lymphocytes: Preference for T cells, Infect. Immun. 35:25–31 (1982).PubMedGoogle Scholar
  84. 84.
    Mangi, R. J., T. P. Munyer, S. Krakowka, R. O. Jacoby, and F. S. Kantor, A canine distemper model of virus-induced anergy,y. Infect. Dis. 133:556–563 (1976).CrossRefGoogle Scholar
  85. 85.
    Kauffman, C. A., A. G. Bergman, and R. P. O’Connor, Distemper virus infection in ferrets: An animal model of immunosuppression, Clin. Exp. Immunol. 67:617–625 (1982).Google Scholar
  86. 86.
    Kaul, T. N., H. Faden, and P. L. Ogra, Effects of respiratory syncytial virus and virus-antibody complexes on the oxidative metabolism of human neutrophils, Infect. Immun. 32:649–654 (1981).PubMedGoogle Scholar
  87. 87.
    Smith, T. F., K. Mcintosh, M. Fishaut, and P. M. Henson. Activation of complement by cells infected with respiratory syncytial virus, Infect. Immun. 33:43–48 (1981).PubMedGoogle Scholar
  88. 88.
    Jakab, G. J., and G. A. Warr, Immune-enhanced phagocytic dysfunction in pulmonary macrophages infected with parainfluenza 1 (Sendai) virus1-3, Am. Rev. Respir. Dis. 124:575–581 (1981).PubMedGoogle Scholar
  89. 89.
    Silverberg, B. A.,G. J. Jakab, R. G. Thompson, G. A. Warr, and K. S. Boo, Ultrastructural alterations in phagocytic functions of alveolar macrophages after parainfluenza virus infection, J. Reticuloendothel. Soc. 25:405–416 (1979).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Raija Vainionpää
    • 1
  • Timo Hyypiä
    • 1
  1. 1.Department of VirologyUniversity of TurkuTurkuFinland

Personalised recommendations