Advertisement

Togavirus-Induced Immunosuppression

  • Umesh C. Chaturvedi
Part of the Infectious agents and pathogenesis book series (IAPA)

Abstract

The viruses included in the Togaviridae family are commonly known as ar boviruses that replicate in the tissues of arthropods and are transmitted to the vertebrate host by the bite of blood-sucking arthropods. The Togaviridae include alpha-and flaviviruses. The flaviviruses were recently separated from Togaviridae into a family, the Flaviviridae(1); however, they have been included for discussion in the present chapter. Arbovirus infections are common in the tropical and subtropical areas of the world. They produce febrile illness with or without a rash, encephalitis, or hemorrhagic manifestations. Some are serious public health problems and have produced extensive epidemics. Eight of the 25 known alphaviruses and 26 of 60 flaviviruses can cause human disease.(2)

Keywords

West Nile Virus Dengue Virus Japanese Encephalitis Virus Dengue Haemorrhagic Fever Japanese Encephalitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Westaway, E. G., M. A. Brinton, S. Y. Gaidamovich, M. C. Horzinek, A. Igarashi, L. Kaariainen, D. K. Lvov, J. S. Porterfìeld, P. K. Russell, and D. W. Trent, Flaviviridae, Intervirology 24:183–192 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    Simpson, D. I. H., Togaviridae, in: Topley and Wilson’s Principle of Bacteriology, Virology and Immunology (F. Brown and G. Wilson, eds.), Vol. 4, pp. 233–254, Edward Arnold, London (1984).Google Scholar
  3. 3.
    Woodruff, J. F., and J. J. Woodruff, The effect of viral infections on the function of the immune system, in: Viral Immunology and Immunopathology (A. L. Notkins, ed.), pp. 393–418, Academic, New York (1975).Google Scholar
  4. 4.
    Halstead, S. B., Immunological parameters of togavirus disease syndromes, in: The Togaviruses (R. W. Schlesinger, ed.), pp. 107–173, Academic, New York (1980).Google Scholar
  5. 5.
    Brown, F. Topley and Wilsons Principles of Bacteriology, Virology and Immunology (F. Brown and G. Wilson, eds.), Vol. 4, pp. 5–13, Edward Arnold, London (1984).Google Scholar
  6. 6.
    Boulton, R. W., and E. G. Westaway, Comparison of togaviruses: Sindbis virus (group A) and Kunjin virus (group B), Virology 49:283–289 (1972).PubMedCrossRefGoogle Scholar
  7. 7.
    Wengler, G., G. Wengler, and H. J. Gross, Studies on virus-specific nucleic acid synthe sized in vertebrate and mosquito cells infected with flaviviruses, Virology 89:423–437 (1978).PubMedCrossRefGoogle Scholar
  8. 8.
    Cleaves, G. R., and D. T. Dubin, Methylation status of intracellular dengue type 240S RNA, Virology 96:159–165 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    Westaway, E. G., Strategy of flavivirus genome: Evidence for multiple internal initiation of translation of proteins specified by Kunjin virus in mammalian cells, Virology 80:320– 335 (1977).PubMedCrossRefGoogle Scholar
  10. 10.
    Westaway, E. G., Replication of flaviviruses, in: The Togaviruses (R. W. Schlesinger, ed.), pp. 531–581, Academic, New York (1980).Google Scholar
  11. 11.
    Westaway, E. G., G. Speight, and L. Endo, Gene order of translation of the flavivirus Kunjin: Further evidence of internal initiation in vivo, Virus Res. 1:333–350 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    Pang, T., Important implications of recent insights into the molecular structure of flavivirus genomes, Virus Inform. Newsl. 2:70–71 (1985).Google Scholar
  13. 13.
    Russell, P. K., W. E. Brandt, and J. M. Dalrymple, Chemical and antigenic structure of flaviviruses, in: The Togaviruses (R. W. Schlesinger, ed.), pp. 503–529, Academic, New York (1980).Google Scholar
  14. 14.
    Qureshi, A. A. ,and D. W. Trent, Group B arbovirus structural and non-structural antigens. III. Serological specificity of solubilized intracellular viral proteins, Infect. Immun. 8:993–999 (1973).PubMedGoogle Scholar
  15. 15.
    Trent, D. W., Antigenic characterization of flavivirus structural proteins separated by isoelectric focusing, J. Virol 22:608–618 (1977).PubMedGoogle Scholar
  16. 16.
    Porterfield, J. S., Antigenic characteristic and classification of togaviridae, in: The Togaviruses (R. W. Schlesinger, ed.), pp. 13–46, Academic, New York (1980).Google Scholar
  17. 17.
    Müllbacher, A., I. D. Marshall, and P. Ferris, Classification of Barmah Forest virus as an alphavirus using cytotoxic T cell assays, J. Gen. Virol. 67:295–299 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    Murphy, B. R., and L. A. Glasgow, Factors modifying host resistance to viral infection. III. Effect of whole body X-irradiation on experimental encephalomyocarditis virus infection in mice, J. Exp. Med. 127:1035–1052 (1968).PubMedCrossRefGoogle Scholar
  19. 19.
    Robinson, T. W. E., R. J. R. Curcton, and R. B. Heath, The effect of cyclophosphamide on Sendai virus infection of mice, J. Med. Microbiol. 2:137–145 (1969).PubMedCrossRefGoogle Scholar
  20. 20.
    Nathanson, N., and G. A. Cole, Immunosuppression and experimental virus infection of the nervous system, Adv. Virus Res. 16:397–448 (1970).PubMedCrossRefGoogle Scholar
  21. 21.
    Svehag, S. E., Formation and dissociation of virus antibody complexes with special reference to the neutralization process, Prog. Med. Virol. 10:1–63 (1968).PubMedGoogle Scholar
  22. 22.
    Berry, D. M., and J. D. Almeida, The morphological and biological effects of various antisera on avian infectious bronchitis, J. Gen. Virol. 3:97–102 (1968).PubMedCrossRefGoogle Scholar
  23. 23.
    Silverstein, S., Macrophages and viral immunity, Semin. Hematology 7:185–214 (1970).Google Scholar
  24. 24.
    Brier, A. M., C. R. Wanlenberg, and A. L. Notkins, Immune injury of cells infected with herpes simplex virus (HSV), Fed. Proc. 30:353 (1971).Google Scholar
  25. 25.
    Smith, J. W., E. Adam, J. L. Melnick, and W. E. Rawls, Use of the release test to demonstrate patterns of antibody response in humans to herpes virus type 1 and 2, J. Immunol. 109:554–564 (1972).PubMedGoogle Scholar
  26. 26.
    Zisman, B., E. F. Wheelock, and A. C. Allison, Role of macrophages and antibody in resistance of mice against yellow fever virus, J. Immunol. 107:236–243 (1971).PubMedGoogle Scholar
  27. 27.
    Rabinowitz, S. G., and W. H. Adler, Host defences during primary Venezuelan equine encephalitis virus infection in mice. I. Passive transfer of protection with immune serum and immune cells, J. Immunol. 110:1345–1353 (1973).PubMedGoogle Scholar
  28. 28.
    Camenga, D. L., N. Nathanson, and G. A. Cole, Cyclophosphamide-potentiated West Nile virus encephalitis: Relative influence of cellular and humoral factors, J. Infect. Dis. 130:634–641 (1974).PubMedCrossRefGoogle Scholar
  29. 29.
    Griffin, D. E., and R. T. Johnson, Role of the immune response in recovery from Sindbis encephalitis in mice, J. Immunol 118:1070–1075 (1977).PubMedGoogle Scholar
  30. 30.
    Chaturvedi, U. C., P. Tandon, and A. Mathur, Effect of immunosuppression on dengue virus infection in mice, J. Gen. Virol. 36:449–458 (1977).PubMedCrossRefGoogle Scholar
  31. 31.
    Chaturvedi, U. C., P. Tandon, A. Mathur, and A. Kumar, Host defence mechanism against dengue virus infection of mice, J. Gen. Virol. 39:293–302 (1978).PubMedCrossRefGoogle Scholar
  32. 32.
    Schmaljohn, A. L., E. D. Johnson, J. M. Dalrymple, and G. A. Cole, Non-neutralizing monoclonal antibodies can prevent lethal alphavirus encephalitis, Nature (Lond.) 297:70– 72 (1982).CrossRefGoogle Scholar
  33. 33.
    Mathews, J. H., and J. T. Roehrig, Determination of the protective epitopes on the glycoproteins of Venezuelan equine encephalomyelitis virus by passive transfer of monoclonal antibodies, J. Immunol. 129:2763–2767 (1982).PubMedGoogle Scholar
  34. 34.
    Mathur, A., K. L. Arora, and U. C. Chaturvedi, Host defence mechanism against Japa nese encephalitis virus infection in mice, J. Gen. Virol. 64:805–811 (1983).PubMedCrossRefGoogle Scholar
  35. 35.
    Boere, W. A. M., B. J. Benaissa-Trouw, N. T. Harmsen, T. Erich, C. A. Kraaijeveld and H. Snippe, Mechanisms of monoclonal antibody-mediated protection against virulent Semliki Forest Virus, J. Virol. 54:546–551 (1985).PubMedGoogle Scholar
  36. 36.
    Hunt, A. R. and J. T. Roehrig, Biochemical and biological characteristics of epitopes on the E1 glycoprotein of Western equine encephalitis virus, Virology 142:334–336 (1985).PubMedCrossRefGoogle Scholar
  37. 37.
    Buckley, A., and E. A. Gould, Neutralization of yellow fever virus studied using monoclonal and polyclonal antibodies, J. Gen. Virol. 66:2523–2531 (1985).PubMedCrossRefGoogle Scholar
  38. 38.
    Gould, E. A., A. Buckley, A. D. T. Barrett, and N. Cammack, Neutralizing (54K) and non-neutralizing (54K and 48K) monoclonal antibodies against structural and nonstructural yellow fever virus proteins confer immunity in mice, J. Gen. Virol. 67:591–595 (1986).PubMedCrossRefGoogle Scholar
  39. 39.
    Ishi, K., Y. Matsunaga &R. Kono, Immunoglobulins produced in response to Japanese encephalitis virus infections of man, J. Immunol. 101:770–775 (1968).Google Scholar
  40. 40.
    Yasui, H., and S. Sugiyama, Evaluation of immunoglobulin against Japanese encephalitis. Report. I. Immunoglobulin in Japanese encephalitis patients at the time of and after hospitalization, J. Jpn. Assoc. Infect. Dis. 43:5–12 (1969).Google Scholar
  41. 41.
    Edelman, R., R. J. Schneider, A. Vejÿajiva, R. Pornpibul, and P. Voodhikul, Persistence of virus specific IgM and clinical recovery after Japanese encephalitis, Am. J. Trop. Med. Hyg. 25:733–738 (1976).PubMedGoogle Scholar
  42. 42.
    Kulshreshtha, R. ,A. Mathur, and U. C. Chaturvedi, Immunological memory in latent Japanese encephalitis virus infection, Br. J. Exp. Pathol. 69 (in press).Google Scholar
  43. 43.
    Schlesinger, J. J., M. W. Brandriss, and E. E. Walsh, Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NSI, J. Gen. Virol. 68:853–857 (1987).PubMedCrossRefGoogle Scholar
  44. 44.
    Heinz, F. X., R. Berger, W. Tuma, and C. Kunz, A topological and functional model of epitopes on the structural glycoprotein of tick-borne encephalitis virus defined by monoclonal antibodies, Virology 126:525–537 (1983).PubMedCrossRefGoogle Scholar
  45. 45.
    Mathews, J. H., and J. T. Roehrig, Elucidation of the topography and determination of the protective epitopes on the E glycoproteins of St. Louis encephalitis virus by passive transfer with monocolonal antibodies, J. Immunol. 132:1533–1537 (1984).PubMedGoogle Scholar
  46. 46.
    Brandriss, M. W., J. J. Schlesinger, E. E. Walsh, and M. Briselli, Lethal 17D yellow fever encephalitis in mice. I. Passive protection by monoclonal antibodies to the envelope proteins of 17D yellow fever and dengue 2 viruses, J. Gen. Virol. 67:229–234 (1986).PubMedCrossRefGoogle Scholar
  47. 47.
    Halstead, S. B., Immune enhancement of viral infection, Prog. Allergy 31:301–364 (1982).PubMedGoogle Scholar
  48. 48.
    Daughaday, C. C., W. E. Brandt, J. M. McCown, and P. K. Russell, Evidence for two mechanisms of dengue virus infection of adherent human monocytes: Trypsin sensitive virus receptors and trypsin resistant immune complex receptors, Infect. Immun. 32:469– 473 (1981).PubMedGoogle Scholar
  49. 49.
    Cardosa, M. J., J. S. Porterfield, and S. Gordon, Complement receptor mediates enhanced flavivirus replication in macrophages, J. Exp. Med. 158:258–263 (1983).PubMedCrossRefGoogle Scholar
  50. 50.
    Henchal, E. A., J. M. McCown, M. K. Gentry, J. M. Dalrymple, and W. E. Brandt, Serological characterization of monoclonal antibodies produced against dengue virus antigens, Fed. Proc. 40:1065 (1981).Google Scholar
  51. 51.
    Brandt, W. E., J. M. McCown, M. K. Gentry, and P. K. Russell, Immune enhancement of dengue-2 virus replication in the U-937 human monocyte line by cross-reactive monoclonal antibodies, Fed. Proc. 40:1065 (1981).Google Scholar
  52. 52.
    Barrett, A. D. T., and E. A. Gould, Antibody mediated early death in vivo after infection with Yellow Fever virus, J. Gen. Virol. 67:2539–2542 (1986).PubMedCrossRefGoogle Scholar
  53. 53.
    Halstead, S. B., C. N. Venkateshan, M. K. Gentry, and L. K. Larsen, Heterogeneity of infection enhancement of dengue 2 strains by monoclonal antibodies, /. Immunol. 132:1529–1532 (1984).PubMedGoogle Scholar
  54. 54.
    Phillpotts, R. J., J. R. Stephenson, and J. S. Porterfield, Antibody-dependent enhancement of tick-borne encephalitis virus infectivity, J. Gen. Virol. 66:1831 -1837 (1985).PubMedCrossRefGoogle Scholar
  55. 55.
    Doherty, P. C., T cells and virus infections, Br. Med. Bull. 41:7–14 (1985).PubMedGoogle Scholar
  56. 56.
    Kelkar, S. D., and K. Banerjee, Cross reactions among flaviviruses in macrophage migration inhibition assay, Acta Virol. (Praha) 22:337–340 (1978).Google Scholar
  57. 57.
    Müllbacher, A., and R. V. Blanden, Murine cytotoxic T-cell response to alphavirus is associated mainly with H-2Dk, Immunogenetics 7:551–561 (1978).PubMedCrossRefGoogle Scholar
  58. 58.
    Müllbacher, A., I. D. Marshall, and R. V. Blanden, Cross-reactive cytotoxic T cells to alphavirus infection, Scand. J. Immunol. 10:291–296 (1979).PubMedCrossRefGoogle Scholar
  59. 59.
    Wolcott, J. A., C. J. Wust, and A. Brown, Immunization with one alphavirus cross-primes cellular and humoral immune responses to a second alphavirus, J. Immunol. 129:1267–1271 (1982).PubMedGoogle Scholar
  60. 60.
    Chaturvedi, U. C., M. I. Shukla, M. Pahwa, and A. Mathur, Inhibition of B and helper T lymphocytes by dengue virus-induced suppressor factor, Indian J. Med. Res. 82:471–474 (1985).PubMedGoogle Scholar
  61. 61.
    Chaturvedi, U. C., M. Pahwa, and A. Mathur, Dengue virus-induced helper T cells, Indian J. Med. Res. 86:1–8 (1987).PubMedGoogle Scholar
  62. 62.
    Allan, J. E., and P. C. Doherty, Stimulation of helper/delayed-type hypersensitivity T cells by flavivirus infection: Determination by macrophage procoagulant assay, J. Gen. Virol. 67:39–46 (1986).PubMedCrossRefGoogle Scholar
  63. 63.
    Kurane, I., D. Hebblewaite, W. E. Brandt, and F. A. Ennis, Lysis of dengue virus-infected cells by natural cell-mediated cytotoxicity, J. Virol. 52:223–230 (1984).PubMedGoogle Scholar
  64. 64.
    Woodman, D. R., A. T. McManus, and G. A. Eddy, Extension of the mean time to death of mice with a lethal infection of Venezuelan equine encephalomyelitis virus by antithymocyte serum treatment, Infect. Immun. 12:1006–1011 (1975).PubMedGoogle Scholar
  65. 65.
    LeBlanc, P. A., W. F. Scherer, and D. H. Sussdorf, Infections of congenitally athymic (nude) and normal mice with avirulent and virulent strains of Venezuelan encephalitis virus, Infect. Immun. 21:779–785 (1978).PubMedGoogle Scholar
  66. 66.
    Bradish, C. J., R. Fitzgeorge, D. Titmuss, and A. Baskerville, The responses of nude-athymic mice to nominally avirulent togavirus infections, J. Gen. Virol. 42:555–556 (1979).PubMedCrossRefGoogle Scholar
  67. 67.
    Hotta, H., I. Murakami, K. Miyasaki, Y. Takeda, H. Shirane, and S. Hotta, Inoculation of dengue virus into nude mice, J. Gen. Virol. 52:71–76 (1981).PubMedCrossRefGoogle Scholar
  68. 68.
    Adler, W. H., and S. G. Rabinowitz, Host defences during primary Venezuelan equine encephalomyelitis virus infection in mice. II. In vitro methods for the measurement and qualitation of immune response, J. Immunol. 110:1354–1362 (1973).PubMedGoogle Scholar
  69. 69.
    Airhart, J. W., G. S. Trevino, and C. P. Craig, Alterations in immune responses by attenuated Venezuelan equine encephalitis vaccine. II. Pathology and soluble antigen localization in guinea pigs, J. Immunol. 102:1228–1234 (1969).PubMedGoogle Scholar
  70. 70.
    Howard, R. J., C. P. Craig, G. S. Trevino, S. F. Dougherty, and S. E. Mergenhagen, Enhanced humoral immunity in mice infected with attenuated Venezuelan equine en cephalitis virus, J. Immunol 103:699–707 (1969).PubMedGoogle Scholar
  71. 71.
    Stauber, E., D. Berger, and R. Piper, The pathogenesis of lactate dehydrogenase elevating virus in mice, J. Comp. Pathol. 85:171–183 (1975).PubMedCrossRefGoogle Scholar
  72. 72.
    Rowson, K. E. K., and B. W. J. Mahy, Lactic dehydrogenase virus, Virol. Monog. 13:1 -121 (1975).Google Scholar
  73. 73.
    Riley, V., and D. Spackman, Modifying effects of a benign virus on the malignant process and the role of physiological stress on tumour incidence, Fogarty Int. Ctr. Proc. 28:319–336 (1974).Google Scholar
  74. 74.
    Riley, V., and D. Spackman, Melanoma enhancement by viral induced stress, in: Pigment Cell ,Vol. 2 (V. Riley, ed.), pp. 163–173, S. Karger, Basel (1976).Google Scholar
  75. 75.
    Proffitt, M. R., C. C. Congdon, and R. L. Tyndall, The combined action of Rauscher leukemia virus and lactic dehydrogenase virus on mouse lymphatic tissue, Int. J. Cancer 9:193–211 (1972).PubMedCrossRefGoogle Scholar
  76. 76.
    Snodgrass, M. J., D. S. Lowrey, and M. G. Hanna, Changes induced by lactic dehydrogenase virus in thymus and thymus-dependent areas of lymphatic tissue, J. Immunol. 108:877–892 (1972).PubMedGoogle Scholar
  77. 77.
    Isakov, N., M. Feldman, and S. Segal, The mechanism of modulation of humoral immune responses after infection of mice with lactic dehydrogenase virus, J. Immunol. 128:969–975 (1982).PubMedGoogle Scholar
  78. 78.
    Santisteban, G. A., V. Riley, and M. A. Fitzmaurice, Thymolytic and adrenal cortical responses to the LDH-elevating virus, Proc. Soc. Exp. Biol. Med. 139:202–206 (1972).Google Scholar
  79. 79.
    Mathur, A., M. Bharadwaj, R. Kulshreshtha, S. Rawat, A. Jain, and U. C. Chaturvedi, Immunopathological study of spleen during Japanese encephalitis virus infection in mice, Br. J. Exp. Pathol. 69:423–432 (1988).PubMedGoogle Scholar
  80. 80.
    Tandon, P., U. C. Chaturvedi, and A. Mathur, Differential depletion of T lymphocytes in the spleen of dengue virus-infected mice, Immunology 37:1–6 (1979).PubMedGoogle Scholar
  81. 81.
    Chaturvedi, U. C., R. Nagar, and A. Mathur, Effect of dengue virus infection on Fcreceptor functions of mouse macrophages, J. Gen. Virol. 64:2399–2407 (1983).PubMedCrossRefGoogle Scholar
  82. 82.
    Nath, P., P. Tandon, L. Gulati, and U. C. Chaturvedi, Histological and ultrastructural study of spleen during dengue virus infection of mice, Indian J. Med. Res. 77:83–90 (1983).Google Scholar
  83. 83.
    Aung-Khin, M., M. M. Khin, Z. Thant, and U. M. Tin, Changes in the tissues of the immune system in dengue haemorrhagic fever. J. Trop. Med. Hyg. 78:256–261 (1975).PubMedGoogle Scholar
  84. 84.
    Michaelides, M. C., and E. S. Simms, Immune response in mice infected with lactic dehydrogenase virus. II. Contact sensitization to DNFB and characterization of lymphoid cells during acute LDV infection, Cell. Immunol. 29:285–294 (1977).PubMedCrossRefGoogle Scholar
  85. 85.
    de Gruchy, G. C., Clinical Haematology in Medical Practice, 3rd ed. ,pp. 359–403 ELBS and Blackwell Scientific Publications, Oxford (1976).Google Scholar
  86. 86.
    Riley, V., Lactate dehydrogenase in the normal and malignant state in mice and the influence of a benign enzyme-elevating virus, in: Methods in Cancer Research Vol. 4 (H. Busch, ed.), pp. 493–618, Academic London (1968).Google Scholar
  87. 87.
    Crispens, C. G., Detection and characterization of a lymphocyte proliferating factor (LPF) in plasma of SJL/J mice infected with LDH virus, Arch. Virol. 72:67–74 (1982).PubMedCrossRefGoogle Scholar
  88. 88.
    Simmons, J. S., J. H. St. John, and F. H. K. Reynolds, Experimental studies of dengue, Philip. J. Sci. 44:1–8 (1931).Google Scholar
  89. 89.
    Nimmannitya, S., S. B. Halstead, S. N. Cohen, and M. R. Margiotta, Dengue and Chikungunya virus infection in man in Thailand, 1962–64. I. Observations on hospitalized patients with haemorrhagic fever, Am. J. Trop. Med. Hyg. 18:954–971 (1969).PubMedGoogle Scholar
  90. 90.
    Halstead, S. B., S. Nimmannitya, and S. Cohen, Observations related to the pathogenesis of dengue haemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered, Yale J. Biol. Med. 42:311–328 (1970).PubMedGoogle Scholar
  91. 91.
    Chaturvedi, U. C., A. Mathur, A. K. Kapoor, N. K. Mehrotra, and R. M. L. Mehrotra, Virological study of an epidemic of febrile illness with haemorrhagic manifestations at Kanpur, India during 1968, Bull. WHO 42:289–293 (1970).Google Scholar
  92. 92.
    Chaturvedi, U. C., A. K. Kapoor, A. Mathur, D. Chandra, A. M. Khan, and R. M. L. Mehrotra, A clinical and epidemiological study of an epidemic of febrile illness with haemorrhagic manifestations which occurred at Kanpur, India in 1968, Bull. WHO 43:281–287 (1970).PubMedGoogle Scholar
  93. 93.
    Wells, R. A., R. McN. Scott, K. Pavanand, V. Sathitsathein, U. Cheamudon, and R. P. MacDermott, Kinetics of peripheral blood leucocyte alterations in Thai children with dengue haemorrhagic fever, Infect. Immun. 28:428–433 (1980).PubMedGoogle Scholar
  94. 94.
    Ikeuchi, H., S. Cornain, Sumarmo, Y. Funahara, A. Shirahata, N. Fujita, Y. Okumo, A. Igarashi, T. Oda, S. W. Agus, R. Dharma, T. Matsuo, and S. Hotta, Analysis of lymphocytes of dengue/DHF patients observed at Jakarta, Indonesia in 1982, in: Proceedings of the International Conference on Dengue/Dengue Haemorrhagic Fever, Kuala Lumpur (T. Pang and R. Pathmanathan, eds.), pp. 355–363, University of Malaya, Kuala Lumpur (1983).Google Scholar
  95. 95.
    Chaturvedi, U. C., A. Mathur, P. Tandon, S. M. Natu, S. Rajvanshi, and H. O. Tandon, Variable effect on peripheral blood leucocytes during JE virus infection of man, Clin. Exp. Immunol. 38:494–498 (1979).Google Scholar
  96. 96.
    Mogensen, S. C., Role of macrophages in natural resistance to virus infection, Microbiol. Rev. 43:1–26 (1979).PubMedGoogle Scholar
  97. 97.
    Morahan, P. S., and S. S. Morse, Macrophage virus interactions, in: Virus-Lymphocyte Interactions: Implications for Disease ,(M. R. Proffitt, ed.) Vol. 7, pp. 17–35, Elsevier/North-Holland, Amsterdam (1979).Google Scholar
  98. 98.
    Morahan, P. S., J. R. Connor, and K. R. Leary, Viruses and the versatile macrophages, Br. Med. Bull. 41:15–21 (1985).PubMedGoogle Scholar
  99. 99.
    Wildy, P., Inhibition of herpes virus multiplication by activated macrophages: A role for arginase, Infect. Immun. 37:42–45 (1982).Google Scholar
  100. 100.
    Denman, A. M., and M. Pinder, Measurement of immunological function in man: Interaction between virus and human leucocytes, Proc. R. Soc. Med. 67:1219–1222 (1974).PubMedGoogle Scholar
  101. 101.
    Bloom, B. R., and B. Rager-Zisman, Cell-mediated immunity in viral infections, in: Viral Immunology and Immunopathology (A. L. Notkins, ed.), pp. 113–133, Academic, London (1975).Google Scholar
  102. 102.
    Bang, F. B., and A. Warwick, Mouse macrophages as host cells for the mouse hepatitis virus and the genetic basis for their susceptibility, Proc. Natl. Acad. Sci. USA 46:1065– 1075 (1960).PubMedCrossRefGoogle Scholar
  103. 103.
    Goodman, G. T., and H. Koprowski, Study of the mechanism of innate resistance to virus infection, J. Cell. Comp. Physiol. 59:333–373 (1962).PubMedCrossRefGoogle Scholar
  104. 104.
    Oaten, S. W., S. Jagelman, and H. E. Webb, Further studies of macrophages in relationship to avirulent Semliki Forest virus infections, Br. J. Exp. Pathol. 61:150–155 (1980).PubMedGoogle Scholar
  105. 105.
    Halstead, S. B., and E. J. O’Rourke, Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody, J. Exp. Med. 146:201–217 (1977).PubMedCrossRefGoogle Scholar
  106. 106.
    Halstead, S. B., The pathogenesis of dengue. Molecular epidemiology in infectious diseases, Am. J. Epidemiol. 114:632–648 (1981).PubMedGoogle Scholar
  107. 107.
    Halstead, S. B., E. J. O’Rourke, and A. C. Allison, Dengue viruses and mononuclear phagocytes. II. Identity of blood and tissue leucocytes supporting in vitro infection, J. Exp. Med. 146:218–229 (1977).PubMedCrossRefGoogle Scholar
  108. 108.
    Chaturvedi, U. C., L. Gulati, and A. Mathur, Further studies on the properties of dengue virus-induced macrophage cytotoxin, Indian J. Exp. Biol. 21:275–279 (1983).PubMedGoogle Scholar
  109. 109.
    Chaturvedi, U. C., R. Nagar, L. Gulati, and A. Mathur, Macrophage functions in dengue virus infection. Proceedings of the International Conference on Dengue/Dengue Haemorrhagic Fever, Kuala Lumpur (T. Pang and R. Pathmanathan, eds.), pp. 343–354, University of Malaya, Kuala Lumpur (1983).Google Scholar
  110. 110.
    Hotta, H., I. Murakami, K. Miyasaki, Y. Takeda, H. Shirane, and S. Hotta, Experimental dengue virus infection using athymic nude mice, in: Proceedings of the First ICMR Seminar on Dengue Haemorrhagic Fever (1980) Kobe, Japan (S. Hotta, ed.), pp. 151 -158, International Centre for Medical Research, Kobe University School of Medicine, Kobe (1981).Google Scholar
  111. 111.
    Gulati, L., U. C. Chaturvedi, and A. Mathur, Depressed macrophage functions in dengue virus-infected mice: Role of the cytotoxic factor, Br. J. Exp. Pathol. 63:194–202 (1982).PubMedGoogle Scholar
  112. 112.
    Rizvi, N., U. C. Chaturvedi, R. Nagar, and A. Mathur, Macrophage functions during dengue virus infection: Antigenic stimulation of B cells, Immunology 62:493–499 (1987).PubMedGoogle Scholar
  113. 113.
    Baron, S., F. Dianzani, and G. J. Stanton, General considerations of the interferon system, in: The Interferon System: A Review to 1982, Part I. ,Vol. 41 (S. Baron, F. Dianzani, and G. J. Stanton, eds.), pp. 1 -12, University of Texas Medical Branch at Galveston, Galveston, Texas (1982).Google Scholar
  114. 114.
    Rager-Zisman, B., and B. R. Bloom, Interferons and natural killer cells, Br. Med. Bull. 41:22–27 (1985).PubMedGoogle Scholar
  115. 115.
    Tongaonkar, S. S., and S. N. Ghosh, Interferon induction by arboviruses, Indian J. Med. Res. 69:865–873 (1979).PubMedGoogle Scholar
  116. 116.
    Cole, G. A., and C. L. Wisseman, Jr., Pathogenesis of type 1 dengue virus infection in suckling, weanling and adult mice. I. The relation of virus replication to interferon and antibody formation, Am. J. Epidemiol. 89:669–680 (1969).PubMedGoogle Scholar
  117. 117.
    Maheshwari, R. K., and B. M. Gupta, A new antiviral agent designated 6-MFA from Aspergillus flavus. III. Amplification of anti Semliki Forest virus activity of 6-MFA by cycloheximide treatment in mice, J. Antibiot. 26:335–340 (1973).CrossRefGoogle Scholar
  118. 118.
    Maheshwari, R. K., B. M. Gupta, S. N. Ghosh, and N. P. Gupta, Antiviral agent (6-MFA) from Aspergillus ochraceus-sensitivity of arbovirus in experimentally infected mice, Indian J. Med. Res. 67:183–189 (1978).PubMedGoogle Scholar
  119. 119.
    Ghosh, S. N., M. K. Goverdhan, D. Cecilia, S. Chelliah, N. Kedarnath, and B. M. Gupta, Protective effect of a fungal interferon inducer (6-MFA) against Japanese encephalitis infection in mice, Indian J. Med. Res. 79:705–708 (1984).PubMedGoogle Scholar
  120. 120.
    Rodda, S. J., and D. O. White, Cytotoxic macrophages: A rapid non-specific response to viral infection, J. Immunol. 117:2067–2072 (1976).PubMedGoogle Scholar
  121. 121.
    Nagar, R., U. C. Chaturvedi, and A. Mathur, Effect of a fungal interferon inducer (6-MFA) on macrophage functions during dengue virus infection, Indian J. Med. Microbiol. 4:191–197 (1986).Google Scholar
  122. 122.
    Glasgow, L. A., Transfer of interferon producing macrophages: New approach to viral chemotherapy, Science 170:854–856 (1970).PubMedCrossRefGoogle Scholar
  123. 123.
    Chaturvedi, U. C., and M. I. Shukla, Characterization of the suppressor factor produced in the spleen of dengue virus-infected mice, Ann. Immunol. Pasteur Inst. 132C:245–251 (1981).CrossRefGoogle Scholar
  124. 124.
    Shukla, M. I., and U. C. Chaturvedi, Dengue virus-induced suppressor factor stimulates production of prostaglandin to mediate suppression, J. Gen. Virol. 56:241–249 (1981).PubMedCrossRefGoogle Scholar
  125. 125.
    Shukla, M. I., and U. C. Chaturvedi, Cycloheximide and mitomycin C treatment inhibits production of dengue virus-induced suppressor factor, Indian J. Exp. Biol. 19:826–828 (1981).PubMedGoogle Scholar
  126. 126.
    Shukla, M. I., and U. C. Chaturvedi, Study of the target cell of the dengue virus-induced suppressor signal, Br. J. Exp. Pathol. 65:267–273 (1984).PubMedGoogle Scholar
  127. 127.
    Shukla, M. I., and U. C. Chaturvedi, Differential cyclophosphamide sensitivity of Tlymphocytes of the dengue virus-induced suppressor pathway, Br. J. Exp. Pathol. 65:397–403 (1984).PubMedGoogle Scholar
  128. 128.
    Shukla, M. I., and U. C. Chaturvedi, Duration of adoptively transferred dengue virus-induced suppressor activity, Br. J. Exp. Pathol. 66:1–7 (1985).Google Scholar
  129. 129.
    Shukla, M. I., and U. C. Chaturvedi, Presence of I-region gene products on the cells and their products of the dengue virus-induced suppressor pathway, Br. J. Exp. Pathol. 67:563–569 (1986).PubMedGoogle Scholar
  130. 130.
    Shukla, M. I., H. Dalakoti, and U. C. Chaturvedi, Ly phenotype of T lymphocytes producing dengue virus-induced immunosuppressive factors, Indian J. Exp. Biol. 20:525–528 (1982).PubMedGoogle Scholar
  131. 131.
    Chaturvedi, U. C., N. Singh, M. I. Shukla, and A. Mathur, In vitro induction of sup pressor T cells by dengue virus, Ann. Virol. Pasteur Inst. 136E:341–351 (1985).CrossRefGoogle Scholar
  132. 132.
    Chaturvedi, U. C., S. Ahmed, A. Mathur and A. Kumar, Characterization of suppressor factor generated in vitro by the dengue virus, Indian J. Med. Microbiol. 4:1–6 (1986).Google Scholar
  133. 133.
    Rawat, S., A. Mathur, and U. C. Chaturvedi, Characterization of Japanese encephalitis virus-induced suppressor T cells and their products for delayed type hypersensitivity, Br. J. Exp. Pathol. 67:571–579 (1986).PubMedGoogle Scholar
  134. 134.
    Rawat, S., A. Mathur, and U. C. Chaturvedi, Characterization of Japanese encephalitis virus-specific suppressor T cells and their product in suppression of the humoral immune response in mice, Ann. Immunol. Pasteur Inst. 137D:391–401 (1986).Google Scholar
  135. 135.
    Chaturvedi, U. C., A. Bhargava, and A. Mathur, Production of cytotoxic factor in the spleen of dengue virus-infected mice, Immunology 40:665–671 (1980).PubMedGoogle Scholar
  136. 136.
    Chaturvedi, U. C., K. R. Mathur, L. Gulati, and A. Mathur, Target lymphoid cells for the cytotoxic factor produced in the spleen of dengue virus-infected mice, Immunol. Lett. 3:13–16 (1981).PubMedCrossRefGoogle Scholar
  137. 137.
    Singh, M., L. Gulati, A. Jain, A. Mathur, and U. C. Chaturvedi, Absence of antimicrobial activity of the dengue virus-induced macrophage cytotoxin, Indian J. Med. Microbiol. 5:53–56 (1987).Google Scholar
  138. 138.
    Chaturvedi, U. C., H. Dalakoti, and A. Mathur, Characterization of the cytotoxic factor produced in the spleen of dengue virus-infected mice, Immunology 41:387–393 (1980).PubMedGoogle Scholar
  139. 139.
    Dalakoti, H., U. C. Chaturvedi, and A. Mathur, Inhibition of production of dengue virus-induced cytotoxic factor by treatment with cycloheximide and mitomycin C. Indian J. Exp. Biol. 20:1–3 (1982).PubMedGoogle Scholar
  140. 140.
    Gulati, L., U. C. Chaturvedi, and A. Mathur, Dengue virus-induced cytotoxic factor induces macrophages to produce a cytotoxin, Immunology 49:121–130 (1983).PubMedGoogle Scholar
  141. 141.
    Gulati, L., U. C. Chaturvedi, and A. Mathur, Production of dengue virus-induced macrophage cytotoxin in vivo, Br. J. Exp. Pathol. 67:269–277 (1986).PubMedGoogle Scholar
  142. 142.
    Chaturvedi, U. C., R. Nagar, L. Gulati, and A. Mathur, Variable effects of dengue virus-induced cytotoxic factors on different subpopulations of macrophages, Immunology 61:297–301 (1987).PubMedGoogle Scholar
  143. 143.
    Gulati, L., U. C. Chaturvedi, and A. Mathur, Characterization of the cytotoxin produced by macrophages in response to dengue virus-induced cytotoxic factor, Br. J. Exp. Pathol. 64:192–197 (1983).Google Scholar
  144. 144.
    Gulati, L., U. C. Chaturvedi, and A. Mathur, Plasma membrane acting drugs inhibit the effect of dengue virus-induced cytotoxic factor on target cells, Ann. Immunol. Pasteur Inst. 1340:227–235 (1983).CrossRefGoogle Scholar
  145. 145.
    Gulati, L., U. C. Chaturvedi, and A. Mathur, Effect of dengue virus-induced macrophage cytotoxin on functions of human blood leucocytes, Indian J. Med. Res. 79:709– 715 (1984).PubMedGoogle Scholar
  146. 146.
    Gulati, L., U. C. Chaturvedi, and A. Mathur, Study of target cell receptor sites for dengue virus-induced cytotoxins, Indian J. Med. Microbiol. 2:235–242 (1984).Google Scholar
  147. 147.
    Dalakoti, H., U. C. Chaturvedi, and A. Mathur, Studies on dengue virus-induced cytotoxic factor, Indian J. Exp. Biol. 21:375–378 (1983).PubMedGoogle Scholar
  148. 148.
    Nagar, R., U. C. Chaturvedi, M. I. Shukla, A. Mathur, and A. Kumar, Suppressor factor abrogates dengue virus-induced depression of Fc-receptor functions of macrophages, Indian J. Exp. Biol. 23:121–125 (1985).PubMedGoogle Scholar
  149. 149.
    Price, W. H., I. S. Thind, W. O’Leary, and A. H.E1 Dadah, A protective mechanism induced by live group B arbovirus independent of serum neutralizing antibodies or interferon, Am. J. Epidemiol. 86:11–27 (1967).PubMedGoogle Scholar
  150. 150.
    Thind, I. S., and W. H. Price, The effect of cyclophosphamide treatment on experimental arbovirus infections, Am. J. Epidemiol. 90:62–68 (1969).PubMedGoogle Scholar
  151. 151.
    Bennett, I. L. Jr., R. R. Wagner, and V. S. LeQuire, Pyrogenecity of influenza virus in rabbits, Proc. Soc. Exp. Biol. Med. 71:132–133 (1949).PubMedGoogle Scholar
  152. 152.
    Atkins, E., and W. C. Huang, Studies on the pathogenesis of fever with influenza viruses. I. The appearance of an endogenous pyrogen in the blood following intravenous injection of virus, J. Exp. Med. 107:383–401 (1958).PubMedCrossRefGoogle Scholar
  153. 153.
    Atkins, E., M. Cronin, and P. Isacson, Endogenous pyrogen release from rabbit blood cells incubated in vitro with parainfluenza virus, Science 146:1469–1470 (1964).PubMedCrossRefGoogle Scholar
  154. 154.
    Dinarello, C. A., Interleukin-1, Rev. Infect. Dis. 6:51–95 (1984).PubMedCrossRefGoogle Scholar
  155. 155.
    Roberts, N. J., Jr., A. H. Prill, and N. Mann Thomas, Interleukin-1 and interleukin-1 inhibitor production by human macrophages exposed to influenza virus or respiratory syncytial virus. Respiratory syncytial virus is a potent inducer of inhibitor activity, J. Exp. Med. 163:511–519 (1986).PubMedCrossRefGoogle Scholar
  156. 156.
    Oldstone, M. B. A., M. Rodriguez, W. H. Daughaday, and P. W. Lampert, Viral perturbation of endocrine function: Disordered cell function leads to disturbed homeostasis and diseases, Nature (London) 307:278–281 (1984).CrossRefGoogle Scholar
  157. 157.
    Woodruff, J. F., and J. J. Woodruff, T lymphocyte interaction with viruses and virus-infected tissues, Prog. Med. Virol. 19:120–160 (1975).PubMedGoogle Scholar
  158. 158.
    Nash, A. A., Tolerance and suppression in virus disease, Br. Med. Bull. 41:41–45 (1985).PubMedGoogle Scholar
  159. 159.
    Riley, V., Persistence and other characteristics of the lactate dehydrogenase-elevating virus (LDH-virus), Prog. Med. Virol. 18:198–213 (1974).PubMedGoogle Scholar
  160. 160.
    Barlow, R. M., Some interactions of virus and maternal/foetal immune mechanism in Border disease of sheep, Prog. Brain Res. 59:255–268 (1983).PubMedCrossRefGoogle Scholar
  161. 161.
    Craig, C. P., S. L. Reynolds, J. W. Airhart, and E. V. Staab, Alterations in immune responses by attenuated Venezuelan equine encephalitis vaccine. I. Adjuvant effect of VEE virus infection in guinea pigs, J. Immunol. 102:1220–1227 (1969).PubMedGoogle Scholar
  162. 162.
    Morag, A., B. Morag, J. M. Bernstein, K. Beutner, and P. L. Ogra, In vitro correlates of cell-mediated immunity in human tonsils after natural or induced rubella virus infection, J. Infect. Dis. 131:409–416 (1975).PubMedCrossRefGoogle Scholar
  163. 163.
    Vesikari, T., and E. Buimovici-Klein, Lymphocyte responses to rubella virus antigen and phytohemagglutinin after administration of the RA 27/3 strain of live attenuated rubella vaccine, Infect. Immun. 11:748–753 (1975).PubMedGoogle Scholar
  164. 164.
    Plotkin, S. A., R. M. Klaus, and J. A. Whitely, Hypogammaglobulinemia in an infant with congenital rubella syndrome; failure of 1-adamantanamine to stop virus excretion, J. Pediatr. 69:1085–1091 (1966).PubMedCrossRefGoogle Scholar
  165. 165.
    Hancock, M. P., C. C. Huntley, and J. L. Sever, Congenital rubella syndrome with immunoglobulin disorders, J. Pediatr. 72:636–645 (1968).PubMedCrossRefGoogle Scholar
  166. 166.
    Michaels, R. H., Immunologic aspects of congenital rubella, Pediatrics 43:339–350 (1969).PubMedGoogle Scholar
  167. 167.
    Hardy, J. B., J. L. Sever, and M. R. Gilkeson, Declining antibody titres in children with congenital rubella, J. Pediatr. 75:213–220 (1969).PubMedCrossRefGoogle Scholar
  168. 168.
    Hyypia, T., J. Eskola, M. Laine, and O. Meurman, B cell function in vitro during rubella infection, Infect. Immun. 43:589–592 (1984).PubMedGoogle Scholar
  169. 169.
    Debre, R., and K. Papp, Sur Ia Cuti-reaction tuberculinique au cours de la rougeole et la rubeole, C.R. Soc. Biol 34:29–33 (1926).Google Scholar
  170. 170.
    Lamb, G. A., Effect of HPV-80 rubella vaccine on the tuberculin reaction, Am. J. Dis. Child. 118:261 (1969).PubMedGoogle Scholar
  171. 171.
    Midulla, M., L. Businco, and L. Moschini, Some effects of rubella vaccination on immunologic responsiveness, Acta Paediatr. Scand. 61:609–611 (1972).PubMedCrossRefGoogle Scholar
  172. 172.
    Kauffman, C. A., J. P. Phair, C. C. Linnemann, Jr., and G. M. Schiff, Cell-mediated immunity in humans during viral infection. I. Effect of rubella on dermal hypersensitivity, Phytohemagglutinin response and T lymphocyte numbers, Infect. Immun. 10:212–215 (1974).PubMedGoogle Scholar
  173. 173.
    Ganguly, R., C. L. Cusumano, and R. H. Waldman, Suppression of cell-mediated immunity after infection with attenuated rubella virus, Infect. Immun. 13:464–469 (1976).PubMedGoogle Scholar
  174. 174.
    Simons, M. J., and M. G. Fitzgerald, Rubella virus and human lymphocytes in culture, Lancet 2:937–940 (1968).PubMedCrossRefGoogle Scholar
  175. 175.
    Buimovici-Klein, E., P. B. Land, P. R. Ziring, and L. Z. Cooper, Impaired cell-mediated immune response in patients with congenital rubella: Correlation with gestational age at time of infection, Pediatrics 64:620–626 (1979).PubMedGoogle Scholar
  176. 176.
    Soontiens, F. J. C. J., and J. Van-der Veen, Evidence for a macrophage-mediated effect of poliovirus on the lymphocyte response to phytohemagglutinin, J. Immunol. 111: 1411 -1419 (1973).PubMedGoogle Scholar
  177. 177.
    Chantler, J. K., and A. J. Tingle, Replication and expression of rubella virus in human lymphocyte populations, J. Gen. Virol. 50:317–328 (1980).PubMedCrossRefGoogle Scholar
  178. 178.
    Van der Logt, J. T. M., A. M. Van Loon, and J. Van-der Veen, Replication of rubella virus in human mononuclear blood cells, Infect. Immun. 27:309–314 (1980).PubMedGoogle Scholar
  179. 179.
    Buimovici-Klein, E., and L. Z. Cooper, Immunosuppression and isolation of rubella virus from human lymphocytes after vaccination with two rubella vaccines, Infect. Immun. 25:352–356 (1979).PubMedGoogle Scholar
  180. 180.
    Mahler, R., and L. Soren, In vitro effects of rubella virus strain RA 27/3 on human lymphocytes, Acta Pathol. Microbiol. Scand. Sect. C 85:49–56 (1977).Google Scholar
  181. 181.
    Lee, J. C., and M. M. Siegel, A differential effect of IgM and IgG antibodies on the blastogenic response of lymphocytes to rubella virus, Cell. Immunol. 13:22–31 (1974).PubMedCrossRefGoogle Scholar
  182. 182.
    Arneborn, P., G. Biberfeld, and J. Wasserman, Immunosuppression and alterations of T-lymphocyte subpopulations after rubella vaccination, Infect. Immun. 29:36–41 (1980).PubMedGoogle Scholar
  183. 183.
    Oldstone, M. B. A., and F. J. Dixon, Lactic dehydrogenase virus induced immune complex type of glomerulonephritis, J. Immunol. 106:1260–1263 (1971).PubMedGoogle Scholar
  184. 184.
    McDonald, T. L., Isolation of Clq-binding virus-antibody immune complexes from lactic dehydrogenase virus (LDV) infected mice, Immunology 45:365–370 (1982).PubMedGoogle Scholar
  185. 185.
    Michaelides, M. C., and E. S. Simms, Immune response in mice infected with lactic dehydrogenase virus. I. Antibody response to DNP-BGG and hyperglobulinaemia in BALB/C mice, Immunology 32:981–988 (1977).PubMedGoogle Scholar
  186. 186.
    Coutelier, J. P., and J. Van Snick, Isotypically restricted activation of B lymphocytes by lactic dehydrogenase virus, Eur. J. Immunol. 15:250–255 (1985).PubMedCrossRefGoogle Scholar
  187. 187.
    Bendinelli, M., and G. L. Asherson, Depression of contact sensitivity by Friend and Riley viruses, Boll. Ist. Sieroterap. Mil. 50:502–507 (1971).Google Scholar
  188. 188.
    Vincent, M. D., J. G. Potter, and S. Cooper, Immunodepression, ascites tumour and lactate dehydrogenase virus, S. Afr. Med. J. 52:924–926 (1977).PubMedGoogle Scholar
  189. 189.
    Isakov, N., S. Segal, and M. Feldman, The immuno-regulatory characteristics of the lactic dehydrogenase virus (LDV), a common contaminant of tumours, Cell. Mol. Biol. 27:83–96 (1981).Google Scholar
  190. 190.
    Oldstone, M. B. A., and F. J. Dixon, Inhibition of antibodies to nuclear antigen and to DNA in New Zealand mice infected with lactate dehydrogenase virus, Science 175:784–786 (1972).PubMedCrossRefGoogle Scholar
  191. 191.
    Michaelides, M. C., and S. Schlesinger, Effect of acute or chronic infection with lactic dehydrogenase virus (LDV) on the susceptibility of mice to Plasmacytoma MOPC-315, J. Immunol. 112:1560–1564 (1974).PubMedGoogle Scholar
  192. 192.
    McDonald, T. L., Blocking of cell-mediated immunity to Moloney murine sarcoma virus-transformed cells by lactate dehydrogenase virus-antibody complex, J. Natl. Can cer Inst. 70:493–497 (1983).Google Scholar
  193. 193.
    Johnson, R. J., and H. S. Shin, Lack of correlation of growth attenuation of murine lymphoma caused by in vitro passage with loss of lactate dehydrogenase virus, J. Natl. Cancer Inst. 71:1337–1341 (1983).PubMedGoogle Scholar
  194. 194.
    Mergenhagen, S. E., A. L. Notkins, and S. F. Dougherty, Adjuventicity of lactic dehydrogenase virus: Influence of virus infection on the establishment of immunologic tolerance to a protein antigen in adult mice, J. Immunol. 99:576–581 (1967).PubMedGoogle Scholar
  195. 195.
    Henderson, D. C., C. E. Tosta, and N. Wedderburn, Exacerbation of murine malaria by concurrent infection with lactic dehydrogenase-elevating virus, Clin. Exp. Immunol. 33:357–359 (1978).PubMedGoogle Scholar
  196. 196.
    Bonventre, P. F., H. C. Bubel, J. G. Michael, and A. D. Nickol, Impaired resistance to bacterial infection after tumour implant is traced to lactic dehydrogenase virus, Infect. Immun. 30:316–319 (1980).PubMedGoogle Scholar
  197. 197.
    Isakov, N., and S. Segal, A tumour associated lactic dehydrogenase virus suppresses the host resistance to infection with Listeria monocytogenes, Immunobiology 164:402–416 (1983).PubMedCrossRefGoogle Scholar
  198. 198.
    Herman, G., H. G. Du Buy, and M. L. Johnson, Studies on the in vivo and in vitro multiplication of the LDH virus of mice. J. Exp. Med. 123:985–998 (1966).CrossRefGoogle Scholar
  199. 199.
    Porter, D. D., H. G. Porter, and B. B. Deerhale, Immunofluorescence assay for antigen and antibody in lactic dehydrogenase virus infection in mice, J. Immunol. 102:431–436 (1968).Google Scholar
  200. 200.
    Stueckemann, J. A., D. M. Ritzi, M. Holth, M. S. Smith, W. J. Swart, W. A. Cafruny, and P. G. W. Plagemann, Replication of lactate dehydrogenase-elevating virus in macrohpages. I. Evidence for cytocidal replication, J. Gen. Virol. 59:245–262 (1982).PubMedCrossRefGoogle Scholar
  201. 201.
    Inada, T., and C. A. Mims, Mouse Ia antigens are receptors for lactate dehydrogenase virus, Nature (Lond.) 308:59–61 (1984).CrossRefGoogle Scholar
  202. 202.
    Inada, T., and C. A. Mims, Ia antigens and Fc-receptor of mouse peritoneal macrophages as determinants of susceptibility to lactic dehydrogenase virus, J. Gen. Virol. 66:1469–1477 (1985).PubMedCrossRefGoogle Scholar
  203. 203.
    Unanue, E. R., D. I. Beller, C. Y. Lu, and P. M. Allen, Antigen presentation: Comments on its regulation and mechanism, J. Immunol. 132:1–5 (1984).PubMedGoogle Scholar
  204. 204.
    Isakov, N., M. Feldman, and S. Segal, Lactic dehydrogenase virus (LDV) impairs the antigen-presenting capacity of macrophages yet fails to affect their phagocytic activity, Immunobiology 162:15–27 (1982).PubMedCrossRefGoogle Scholar
  205. 205.
    Isakov, N., M. Feldman, and S. Segal, Acute infection of mice with lactic dehydrogenase virus (LDV) impairs the antigen-presenting capacity of their macrophages, Cell. Immunol. 66:317–332 (1982).PubMedCrossRefGoogle Scholar
  206. 206.
    Taylor, R. B., and A. Basten, Suppressor cells in humoral immunity and tolerance, Br. Med. Bull. 32:152–157 (1976).PubMedGoogle Scholar
  207. 207.
    Pang, T., P. Y. Wong, and R. Pathmanathan, Induction and characterization of delayed-type hypersensitivity to dengue virus in mice, J. Infect. Dis. 146:235–242 (1982).PubMedCrossRefGoogle Scholar
  208. 208.
    Pang, T., S. Devi, W. P. Yeen, I. F. C. McKenzie, and Y. K. Leong, Lyt phenotype and H-2 compatibility requirements of effector cells in the delayed-type hypersensitivity response to dengue virus infection, Infect. Immun. 43:429–431 (1984).PubMedGoogle Scholar
  209. 209.
    Nagarkatti, M., P. S. Nagarkatti, and K. M. Rao, Effect of experimental dengue virus infection on humoral and cell-mediated immune response to thymus-dependent antigen, Int. Arch. Allergy Appl. Immunol. 62:361–369 (1980).PubMedCrossRefGoogle Scholar
  210. 210.
    Wong, P. Y., S. Devi, I. F. C. McKenzie, K. L. Yap, and T. Pang, Induction and Lyphenotype of suppressor T cells in mice during primary infection with dengue virus, Immunology 51:51–56 (1984).PubMedGoogle Scholar
  211. 211.
    Nagarkatti, P. S., and M. Nagarkatti, Effect of experimental dengue virus infection on immune response of the host. I. Nature of changes in T suppressor cell activity regulat ing the B and T cell response to heterologous antigens, J. Gen. Virol. 64:1441–1447 (1983).PubMedCrossRefGoogle Scholar
  212. 212.
    Halstead, S. B., N. J. Marchette, J. S. Sung Chow, and S. Lolekha, Dengue virus replication enhancement in peripheral blood leucocytes from immune human beings, Proc. Soc. Exp. Biol. Med. 151:136–139 (1976).PubMedGoogle Scholar
  213. 213.
    Chaturvedi, U. C., M. I. Shukla, K. R. Mathur, and A. Mathur, Dengue virus-induced cytotoxic factor suppresses immune response of mice to sheep erythrocytes, Immunology 43:311–316 (1981).PubMedGoogle Scholar
  214. 214.
    Nagar, R., U. C. Chaturvedi, and A. Mathur, Effect of dengue virus-induced cytotoxic factor on Fc-receptor functions of mouse macrophages, Br. J. Exp. Pathol. 65:11–17 (1984).PubMedGoogle Scholar
  215. 215.
    Chaturvedi, U. C., P. Nath, L. Gulati, A. Jain, and A. Mathur, Subcellular changes in spleen cells of mice treated with the dengue virus-induced cytotoxic factor, Indian J. Med. Res. 86:284–289 (1987).PubMedGoogle Scholar
  216. 216.
    Nagar, R., U. C. Chaturvedi, A. Kumar, and A. Mathur, Abrogation of dengue virus-induced alteration of Fc-receptor functions of macrophages by splenectomy or drug treatment, Indian J. Med. Res. 81:537–546 (1985).PubMedGoogle Scholar
  217. 217.
    Chaturvedi, U. C., L. Gulati, and A. Mathur, Inhibition of E-rosette formation and phagocytosis by human blood leucocytes after treatment with the dengue virus-induced cytotoxic factor, Immunology 45:679–685 (1982).PubMedGoogle Scholar
  218. 218.
    Nagar, R., U. C. Chaturvedi, A. Mathur, and A. Kumar, Effect of dengue virus-induced cytotoxic factor on blood leucocytes of monkeys, Indian J. Med. Res. 84:339–347 (1986).PubMedGoogle Scholar
  219. 219.
    Chaturvedi, U. C., Virus-induced cytotoxic factor in AIDS and dengue, Immunol. Today 7:159 (1986).CrossRefGoogle Scholar
  220. 220.
    Chaturvedi, U. C., A. Mathur, and R. M. L. Mehrotra, Experimentally produced cardiac injury following dengue virus infection, Indian J. Pathol. Bacteriol. 17:218–220 (1974).PubMedGoogle Scholar
  221. 221.
    Agarwal, D. K., P. Tandon, U. C. Chaturvedi, and A. Kumar, Biochemical study of certain enzymes and metabolites of carbohydrate metabolism in the skeletal muscles of dengue virus infected mice, J. Gen. Virol. 40:399–408 (1978).CrossRefGoogle Scholar
  222. 222.
    Tandon, P., U. C. Chaturvedi, and A. Mathur, Dengue virus-induced thymus-derived suppressor cells in the spleen of mice, Immunology 38:653–658 (1979).PubMedGoogle Scholar
  223. 223.
    Chaturvedi, U. C., M. I. Shukla, and A. Mathur, Thymus dependent lymphocytes of the dengue virus-infected mice spleen mediate suppression through prostaglandin, Immunology 42:1–6 (1981).PubMedGoogle Scholar
  224. 224.
    Chaturvedi, U. C., M. I. Shukla, and A. Mathur, Role of macrophages in transmission of dengue virus-induced suppressor signal to a subpopulation of T lymphocytes, Ann. Immunol. Pasteur Inst. 133C:83–96 (1982).CrossRefGoogle Scholar
  225. 225.
    Shukla, M. I., and U. C. Chaturvedi, In vivo role of macrophages in transmission of dengue virus-induced suppressor signal to T lymphocytes, Br. J. Exp. Pathol. 63:522–529 (1982).PubMedGoogle Scholar
  226. 226.
    Shukla, M. I., and U. C. Chaturvedi, Transmission of dengue virus-induced suppressor signal from macrophage to lymphocyte occurs by cell contact, Br. J. Exp. Pathol. 64:87– 92 (1983).PubMedGoogle Scholar
  227. 227.
    Chaturvedi, U. C., Dengue virus-induced suppressor pathway, Curr. Sci. 53:971–976 (1984).Google Scholar
  228. 228.
    Mathur, A., S. Rawat, and U. C. Chaturvedi, Induction of suppressor cells in Japanese encephalitis virus-infected mice, Br. J. Exp. Pathol. 64:336–343 (1983).PubMedGoogle Scholar
  229. 229.
    Mathur, A., S. Rawat, and U. C. Chaturvedi, Suppressor T cells for delayed-type hypersensitivity to Japanese encephalitis virus, Immunology 52:395–402 (1984).PubMedGoogle Scholar
  230. 230.
    Mathur, A., S. Rawat, U. C. Chaturvedi, and V. S. Misra, Macrophage transmission of suppressor signal for suppression of delayed type hypersensitivity and humoral response in JEV-infected mice, Br. J. Exp. Pathol. 67:171–179 (1986).PubMedGoogle Scholar
  231. 231.
    Mathur, A., R. Kulshreshtha, S. Rawat, and U. C. Chaturvedi, Memory suppressor T cells in latent Japanese encephalitis virus infection, Immunology 60:71–74 (1987).PubMedGoogle Scholar
  232. 232.
    Germain, R. N., and B. Benacerraf, A single major pathway of T lymphocyte interactions in antigen-specific immune suppression, Scand. J. Immunol. 13:1 -10 (1981).PubMedCrossRefGoogle Scholar
  233. 233.
    WHO Memoranda, Pathogenetic mechanisms in dengue haemorrhagic fever. Report of an International collaborative study, Bull. WHO 48:117–133 (1973).Google Scholar
  234. 234.
    Liew, F. Y., and S. M. Russell, Inhibition of pathogenic effect of effector T cells by specific suppressor T cells during influenza virus infection in mice, Nature (Lond.) 304:541–543 (1983).CrossRefGoogle Scholar
  235. 235.
    Burns, W. H., and R. Saral, Opportunistic viral infections, Br. Med. Bull. 41:46–49 (1985).PubMedGoogle Scholar
  236. 236.
    Chaturvedi, U. C., A. Mathur, A. Chandra, S. K. Das, H. O. Tandon, and U. K. Singh, Transplacental infection with Japanese encephalitis virus, J. Infect. Dis. 141:712–715 (1980).PubMedCrossRefGoogle Scholar
  237. 237.
    Mathur, A., H. O. Tandon, K. R. Mathur, N. B. S. Sarkari, U. K. Singh, and U. C. Chaturvedi, Japanese encephalitis virus infection during pregnancy, Indian J. Med. Res. 81:9–12 (1985).PubMedGoogle Scholar
  238. 238.
    Mathur, A., K. L. Arora, and U. C. Chaturvedi, Congenital infection of mice with Japanese encephalitis virus, Infect. Immun. 34:26–29 (1981).PubMedGoogle Scholar
  239. 239.
    Mathur, A., K. L. Arora, S. Rawat, and U. C. Chaturvedi, Persistence, latency and reactivation of Japanese encephalitis virus infection in mice, J. Gen. Virol. 67:381–385 (1986).PubMedCrossRefGoogle Scholar
  240. 240.
    Mathur, A., K. L. Arora, S. Rawat, and U. C. Chaturvedi, Japanese encephalitis virus latency following congenital infection in mice, J. Gen. Virol. 67:945–947 (1986).PubMedCrossRefGoogle Scholar
  241. 241.
    Mathur, A., K. L. Arora, and U. C. Chaturvedi, Transplacental Japanese encephalitis virus (JEV) infection in mice during consecutive pregnancies, J. Gen. Virol. 59:213–217 (1982).PubMedCrossRefGoogle Scholar
  242. 242.
    Hudson, B. W., K. Wolff, and J. C. DeMartini, Delayed type hypersensitivity responses in mice infected with St. Louis encephalitis virus: Kinetics of the response and effects of immunoregulatory agents, Infect. Immun. 24:71–76 (1979).PubMedGoogle Scholar
  243. 243.
    Kraaijeveld, C. A., M. Harmsen, and B. B. Khader, Delayed type hypersensitivity against Semliki Forest virus in mice, Infect. Immun. 23:219–223 (1979).PubMedGoogle Scholar
  244. 244.
    Kelkar, S. D., and K. Banerjee, Passive transfer of protection through immune cells in Japanese encephalitis virus infection in mice. A preliminary report, Indian J. Med. Res. 64:1720–1721 (1976).PubMedGoogle Scholar
  245. 245.
    Kelkar, S. D., F. M. Rodrigues, and K. Banerjee, Development of in vitro correlate of cell mediated immunity following Japanese encephalitis inactivated vaccine among laboratory personnel, Indian J. Med. Res. 83:104–107 (1986).PubMedGoogle Scholar
  246. 246.
    Nagarkatii, P. S., M. B. D’Souza, and K. M. Rao, Use of sensitized spleen cells in capillary tube migration inhibition test to demonstrate cellular sensitization to dengue virus in mouse, J. Immunol. Methods 23:341–348 (1978).CrossRefGoogle Scholar
  247. 247.
    Gajdosova, E., C. Oravec, and V. Mayer, Cell-mediated immunity in flavivirus infection. I. Induction of cytotoxic T lymphocytes in mice by an attenuated virus from tick-borne encephalitis complex and its group reactive character, Acta Virol. (Praha) 25:10–18 (1981).Google Scholar
  248. 248.
    McFarland, H. F., D. E. Griffin, and R. T. Johnson, Specificity of the inflammatory response in viral encephalitis. I. Adoptive immunization of immunosuppressed mice infected with Sindbis virus, J. Exp. Med. 136:216–226 (1972).PubMedCrossRefGoogle Scholar
  249. 249.
    Jacoby, R. O., P. N. Bhatt, and A. Schwartz, Protection of mice from lethal flaviviral encephalitis by adoptive transfer of spleen cells from donors infected with live virus, J. Infect. Dis. 141:617–624 (1980).PubMedCrossRefGoogle Scholar
  250. 250.
    Zhang, Y. H., G. G. Zhou, and W. F. Yue, Cell mediated immune response to Japanese encephalitis virus. II. Protection of mice against virulent virus challenge by adoptive transfer of immune spleen cells from donor injected with an attenuated live or inactivated vaccine, Chinese J. Microbiol. Immunol. 2:213–219 (1982).Google Scholar
  251. 251.
    Berkovich, S., and S. Starr, Effects of live type 1 poliovirus vaccine and other viruses on the tuberculin skin test, N. Engl. J. Med. 274:67–72 (1966).PubMedCrossRefGoogle Scholar
  252. 252.
    Nagarkatti, M. ,and P. S. Nagarkatti, Suppression of intrinsic B cell function in dengue-infected mice, Experientia 35:1518–1519 (1979).PubMedCrossRefGoogle Scholar
  253. 253.
    Mathur, A., K. L. Arora, and U. C. Chaturvedi, Immune response to Japanese encephalitis virus in mother mice and their congenitally infected offspring, J. Gen. Virol. 64:2027–2031 (1983).PubMedCrossRefGoogle Scholar
  254. 254.
    Mathur, A. ,R. Kulshreshtha, and U. C. Chaturvedi, Induction of secondary immune response by reactivated Japanese encephalitis virus in latently infected mice, Immunology 60:481–484 (1987).PubMedGoogle Scholar
  255. 255.
    Kesson, A. M., R. V. Blanden, and A. Müllbacher, The primary in vitro murine cytotoxic T cell response to the flavivirus, West Nile, J. Gen. Virol. 68:2001–2006 (1987).PubMedCrossRefGoogle Scholar
  256. 256.
    Khanna, M., U. C. Chaturvedi and A. Mathur. Abrogation of helper T cells by dengue virus-induced cytotoxic factor. Curr. Sci. 57:411–414 (1988).Google Scholar
  257. 257.
    Khanna, M., U. C. Chaturvedi, and A. Mathur. Cytotoxic effects of dengue virus-induced cytotoxin on helper T cells. Indian J. Med. Microbiol. 6:46–50 (1988).Google Scholar
  258. 258.
    Chaturvedi, U. C., N. Srivastava, and A. Mathur, Presence of receptors for antigen and antibody on dengue virus-induced suppressor T cells and their products. Curr. Sci. 57:691–696 (1988).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Umesh C. Chaturvedi
    • 1
  1. 1.Department of MicrobiologyKing George’s Medical CollegeLucknowIndia

Personalised recommendations