Advertisement

Arenaviruses

  • Kathryn E. Wright
  • William E. Rawls
Part of the Infectious agents and pathogenesis book series (IAPA)

Abstract

Over the years, three phenomena have focused attention on members of the arenaviruses family. Soon after the discovery of lymphocytic choriomeningitis virus (LCMV), it became apparent that the virus was capable of establishing a persistent infection in its natural host, Mus musculus. (1) Persistence of virus in animals infected in utero or in the newborn period is a feature shared by all Arenaviridae and probably represents a mechanism for virus survival in nature.(2) The mechanisms responsible for this viral persistence have been extensively investigated. Second, acute disease due to LCMV in adult mice can be abrogated by treatments that immunosuppressed the host. Subsequent studies have demonstrated that much of the pathology associated with Arenaviridae-induced diseases has an immune basis. These include the acute central nervous system (CNS) disease attributed to T lymphocytes as well as renal disease in chronically infected animals attributable to immune complex formation.(3,4) Finally, arenaviruses produce severe hemorrhagic diseases in humans, an incidental host. These include Argentine hemorrhagic fever caused by Junin virus, Bolivian hemorrhagic fever caused by Machupo virus, and Lassa fever caused by Lassa virus. The virulence of these viruses in humans has hampered investigation of the pathophysiology of the diseases they produce, although considerable information is available from clinical studies and from experimental infections using avirulent mutants in susceptible laboratory animals. Despite the fact that virus modulation of host immunity could contribute to all three phenomena, there is only limited evidence that this is the case.

Keywords

Infected Mouse Viral Antigen Hemorrhagic Fever Lymphocytic Choriomeningitis Lassa Fever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Traub, E., Persistence of lymphocytic choriomeningitis virus in immune animals and its relation to immunity, J. Exp. Med. 63:847–861 (1936).PubMedCrossRefGoogle Scholar
  2. 2.
    Johnson, K. N., P. A. Webb, and G. Justines, Biology of Tacaribe-complex viruses, in: Lymphocytic Choriomeningitis Virus and Other Arenaviruses (F. Lehmann-Grube, ed.), pp. 241–258, Springer-Verlag, New York (1973).CrossRefGoogle Scholar
  3. 3.
    Buchmeier, M. J., R. M. Welsh, F. J. Dutko, and M. B. A. Oldstone, The virology and immunobiology of lymphocytic choriomeningitis virus infection, Adv. Immunol. 30:275–331 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    Lehmann-Grube, F., Portrait of viruses: Arenaviruses, Intervirol. 22:121–145 (1984).CrossRefGoogle Scholar
  5. 5.
    Howard, C. R., and P. R. Young, Variation among new and old world arenaviruses, Trans. R. Inc. Trop. Med. Hyg. 78:299–306 (1984).CrossRefGoogle Scholar
  6. 6.
    Wulff, H., J. V. Lange, and P. A. Webb, Interrelationships among arenaviruses measured by indirect immunofluorescence, Intervirol. 9:344–350 (1978).CrossRefGoogle Scholar
  7. 7.
    Murphy, F. A., P. A. Webb, K. M. Johnson, and S. G. Whitfield, Morphological com parison of Machupo with lymphocytic choriomeningitis virus: Basis for a new taxonomic group, J. Virol. ,4:535–541 (1969).PubMedGoogle Scholar
  8. 8.
    Murphy, F. A., and S. G. Whitfield, Morphology and morphogenesis of arenaviruses, Bull. WHO 52:409–419 (1975).PubMedGoogle Scholar
  9. 9.
    Rawls, W. E., and W. C. Leung, Arenaviruses, in: Comprehensive Virology ,Vol. 14 (H. Fraenkel-Conrat and R. R. Wagner, eds.), pp. 157–192, Plenum, New York (1979).Google Scholar
  10. 10.
    Leung, W. C., and W. E. Rawls, Virion-associated ribosomes are not required for the replication of Pichinde virus, Virology 81:174–176 (1977).PubMedCrossRefGoogle Scholar
  11. 11.
    Auperin, D., V. Romanowski, M. Galinski, and D. H. L. Bishop, Sequencing studies of Pichinde arenavirus S RNA indicate a novel coding strategy in ambisense viral S RNA, J. Virol. 52:897–908 (1984).PubMedGoogle Scholar
  12. 12.
    Buchmeier, M. J., and M. B. A. Oldstone, Protein structure of lymphocytic choriomeningitis virus: Evidence for a cell-associated precursor of the virion glycopeptides, Virology 99:111–120 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    Harnish, D. G., W. C. Leung, and W. E. Rawls, Characterization of polypeptides immunoprecipitable from Pichinde virus-infected BHK-21 cells, J. Virol. 38:840–848 (1981).PubMedGoogle Scholar
  14. 14.
    Gard, G. P., A. C. Vezza, D. H. L. Bishop, and R. W. Compans, Structural proteins of Tacaribe and Tamiami virions, Virology 83:84–95 (1977).CrossRefGoogle Scholar
  15. 15.
    Casals, J., Arenaviruses, in: Viral Infections of Humans ,2nd ed. (A. Evans, ed.), pp. 127–150, Plenum, New York (1984).CrossRefGoogle Scholar
  16. 16.
    de Bracco, M. M. E., M. T. Rimoldi, P. M. Cossio, A. Rabinovich, J. I. Maistegui, G. Carballa, and R. M. Arana, Argentine hemorrhagic fever. Alterations of the complement system and anti-Junin-virus humoral response, N. Engl. J. Med. 299:216–220 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    Hotchin, J., The biology of lymphocytic choriomeningitis infection. Virus-induced immune disease, Cold Spring Harbor Symp. Quant. Biol. 27:479–499 (1962).PubMedCrossRefGoogle Scholar
  18. 18.
    Gilden, D. H., G. A. Cole, and N. Nathanson, Immunopathogenesis of acute central nervous system disease produced by lymphocytic choriomeningitis virus. II. Adoptive immunization of virus carriers, J. Exp. Med. 135:874–889 (1972).PubMedCrossRefGoogle Scholar
  19. 19.
    Doherty, P. C., and R. M. Zinkernagel, Capacity of sensitized thymus-derived lymphocytes to induce fatal lymphocytic choriomeningitis is restricted by the H-2 gene complex, J. Immunol. 114:30–33 (1975).PubMedGoogle Scholar
  20. 20.
    Allan, J. E., and P. C. Doherty, Immune T cells can protect or induce fatal neurological disease in murine lymphocytic choriomeningitis, Cell. Immunol. 90:401–407 (1985).PubMedCrossRefGoogle Scholar
  21. 21.
    Doyle, M. V., and M. B. A. Oldstone, Interactions between viruses and lymphocytes. I. In vivo replication of lymphocytic choriomeningitis virus in mononuclear cells during both chronic and acute viral infections, J. Immunol. 121:1262–1269 (1978).PubMedGoogle Scholar
  22. 22.
    Popescu, M., J. Löhler, and F. Lehmann-Grube, Infectious lymphocytes in lymphocytic choriomeningitis virus carrier mice, J. Gen. Virol. 42:481–492 (1979).PubMedCrossRefGoogle Scholar
  23. 23.
    Lohler, J., and F. Lehmann-Grube, Immunopathologic alterations of lymphatic tissues of mice infected with lymphocytic choriomeningitis virus. I. Histopathologic findings, Lab. Invest. 44:193–204 (1981).PubMedGoogle Scholar
  24. 24.
    Lehmann-Grube, F., U. Assmann, C. Löliger, D. Moskophidis, and J. Löhler, Mechanism of recovery from acute virus infection. I. Role of T lymphocytes in the clearance of lymphocytic choriomeningitis virus from spleens of mice,J. Immunol. 134:608–615 (1985).PubMedGoogle Scholar
  25. 25.
    Byrne, J. A., and M. B. A. Oldstone, Biology of cloned cytotoxic T lymphocytes-specific for lymphocytic choriomeningitis virus. VI. Migration and activity in vivo in acute and persistent infection, J. Immunol. 136:698–704 (1986).PubMedGoogle Scholar
  26. 26.
    Webb, P. A., K. M. Johnson, C. J. Peters, and G. Justines, Behavior of Machupo and Latino viruses in calomys callosus from two geographic areas of Bolivia, in: Lymphocytic Choomeningitis Virus and Other Arenaviruses (F. Lehmann-Grube, ed.), pp. 313–322, Springer-Verlag, Berlin (1973).CrossRefGoogle Scholar
  27. 27.
    Gilden, D. H., H. M. Friedman, C. O. Kyj, R. A. Roosa, and N. Nathanson, Tamiami virus-induced immunopathological disease of the central nervous system, in: Lymphocytic Choriomeningitis Virus and Other Arenaviruses (F. Lehmann-Grube, ed.), pp. 287–297, Springer-Verlag, New York (1973).CrossRefGoogle Scholar
  28. 28.
    Trapido, H., and C. Sanmartin, Pichinde virus, a new virus of the Tacaribe group from Colombia, Am. J. Trop. Med. Hyg. 20:631–641 (1971).PubMedGoogle Scholar
  29. 29.
    Buchmeier, M. J., and W. E. Rawls, Variation between strains of hamsters in the lethality of Pichinde virus infections, Infect. Immun. 16:413–421 (1977).PubMedGoogle Scholar
  30. 30.
    Gee, S. R., M. A. Chan, D. A. Clark, and W. E. Rawls, Role of natural killer cells in Pichinde virus infection of Syrian hamsters, Infect. Immun. 31:919–928 (1981).PubMedGoogle Scholar
  31. 31.
    Jahrling, P. B., R. A. Hesse, J. B. Rhoderick, M. A. Elwell, and J. B. Moe, Pathogenesis of a Pichinde virus strain adapted to produce lethal infection in guinea pigs, Infect. Immun. 32:872–880 (1981).PubMedGoogle Scholar
  32. 32.
    Murphy, F. A., M. J. Buchmeier, and W. E. Rawls, The reticuloendothelium as the target in a virus infection: Pichinde virus pathogenesis in two strains of hamsters, Lab. Invest. 37:502–515 (1977).PubMedGoogle Scholar
  33. 33.
    Weissenbacher, M. C., L. B. De Guerrero, and M. C. Boxaca, Experimental biology and pathogenesis of Junin virus infection in animals and man, Bull. WHO 52:507–515 (1975).PubMedGoogle Scholar
  34. 34.
    Walker, D. H., H. Wulff, J. V. Lange, and F. A. Murphy, Comparative pathology of Lassa virus infection in monkeys, guinea-pigs and Mastomys natalensis, Bull. WHO 52:523–534 (1975).PubMedGoogle Scholar
  35. 35.
    Borden, E. C., and N. Nathanson, Tacaribe virus infection of the mouse: An immunopathologic disease model, Lab. Invest. 30:465–473 (1974).PubMedGoogle Scholar
  36. 36.
    Barrios, H. A., S. N. Rondinone, J. L. Blejer, O. A. Giovaniello, and N. R. Nota, Development of specific immune response in mice infected with Junin virus, Acta Virol. (Praha) 26:156–164 (1982).Google Scholar
  37. 37.
    Weissenbacher, M. C., M. A. Calello, C. J. Quintans, H. Panisse, N. M. Woyskowski, and V. H. Zanndi, Junin virus infection in genetically athymic mice, Intervirology 19:1–5 (1983).PubMedCrossRefGoogle Scholar
  38. 38.
    Besuschio, S. C., M. C. Weissenbacher, and G. A. Schmunis, Different histopathological response to arenavirus infection in thymectomized mice, Arch. Ges. Virusforsch. 40:21–28 (1973).PubMedCrossRefGoogle Scholar
  39. 39.
    Laguens, R. M., M. M. Avila, S. R. Samoilovich, M. C. Weissenbacher and R. P. Laguens, Pathogenicity of an attenuated strain (XJCl3) of Junin virus. Morphological and virological studies in experimentally infected guinea pigs, Intervirology 20:195–201 (1983).PubMedCrossRefGoogle Scholar
  40. 40.
    Murphy, F. A., W. Winn, D. H. Walker, M. R. Flemister, and S. G. Whitfield, Early lymphoreticular viral tropism and antigen persistence. Tamiami virus infection in the cotton rat, Lab. Invest. 34:125–140 (1976).PubMedGoogle Scholar
  41. 41.
    Carballal, G., M. Rodriguez, M. J. Frigerio, and C. Vasquez, Junin virus infection of guinea-pigs: Electron microscope studies of peripheral blood and bone marrow, J. Infect. Dis. 135:367–373 (1977).PubMedCrossRefGoogle Scholar
  42. 42.
    Laguens, M., J. G. Chambo, and R. P. Laguens, In vivo replication of pathogenic and attenuated strains of Junin virus in different cell populations of lymphatic tissue, Infect. Immun. 41:1279–1283 (1983).PubMedGoogle Scholar
  43. 43.
    Mims, C. A., and S. Wainwright, The immunodepressive action of lymphocytic choriomeningitis virus in mice, J. Immunol. 101:717–724 (1968).PubMedGoogle Scholar
  44. 44.
    Bro-Jørgensen, K., F. Güttler, P. N. Jørgensen, and M. Volkert, T lymphocyte function as the principal target of lymphocytic choriomeningitis virus-induced immunosuppression, Infect. Immun. 11:622–629 (1975).PubMedGoogle Scholar
  45. 45.
    Bro-Jørgensen, K., and M. Volkert, Defects in the immune system of mice infected with lymphocytic choriomeningitis virus, Infect. Immun. 9:605–614 (1974).PubMedGoogle Scholar
  46. 46.
    Oldstone, M. B. A., A. Tishon, J. M. Chiller, W. O. Weigle, and F. J. Dixon, Effect of chronic viral infection on the immune system. 1. Comparison of the immune responsiveness of mice chronically infected with LCM virus with that of non-infected mice, J. Immunol 110:1268–1278 (1973).PubMedGoogle Scholar
  47. 47.
    Haas, V. H., Some relationships between lymphocytic choriomeningitis (LCM) virus and mice, J. Infect. Dis. 94:187–198 (1954).PubMedCrossRefGoogle Scholar
  48. 48.
    Traub, E., Observations on immunological tolerance and “immunity” in mice infected congenitally with the virus of lymphocytic choriomeningitis, Arch. Ges. Virusforsch. 10:303–314 (1961).CrossRefGoogle Scholar
  49. 49.
    Parodi, A. S., N. R. Nota, L. B. deGuerrero, M. J. Frigerio, M. Weissenbacher, and E. Rey, Inhibition of immune response in experimental hemorrhagic fever (Junin virus), Acta Virol. (Praha) 11:120–125 (1967).Google Scholar
  50. 50.
    Kimming, W., and F. Lehmann-Grube, The immune response of the mouse to lymphocytic choriomeningitis virus. I. Circulating antibodies, J. Gen. Virol. 45:703–710 (1979).CrossRefGoogle Scholar
  51. 51.
    Oldstone, M. B. A., and F. J. Dixon, Lymphocytic choriomeningitis; production of antibody by “tolerant” infected mice, Science 158:1193–1195 (1967).PubMedCrossRefGoogle Scholar
  52. 52.
    Hotchin, J., L. Benson and E. Sikora, The detection of neutralizing antibody to lymphocytic choriomeningitis virus in mice, J. Immunol. 102:1128–1135 (1969).PubMedGoogle Scholar
  53. 53.
    Thomsen, A. R., M. Volkert and O. Marker, Different isotype profiles of virus-specific antibodies in acute and persistent lymphocytic choriomeningitis virus infection in mice, Immunology 55:213–223 (1985).PubMedGoogle Scholar
  54. 54.
    Moskophidis, D., and F. Lehmann-Grube, The immune response of the mouse to lymphocytic choriomeningitis virus. IV. Enumeration of antibody-producing cells in spleens during acute and persistent infection, J. Immunol. 133:3366–3370 (1984).PubMedGoogle Scholar
  55. 55.
    Lehmann-Grube, F., I. Niemeyer, and J. Lohler, Lymphocytic choriomeningitis of the mouse. IV. Depression of the allograft reaction, Med. Microbiol. Immunol. 158:16–25 (1972).PubMedCrossRefGoogle Scholar
  56. 56.
    Güttler, F., K. Bro-Jørgensen, P. N. Jørgensen, Transient impaired cell-mediated tumor immunity after acute infection with lymphocytic choriomeningitis virus, Scand. J. Immu nol. 4:327–336 (1975).CrossRefGoogle Scholar
  57. 57.
    Jacobs, R. P., and G. A. Cole, Lymphocytic choriomeningitis virus-induced immunosuppression: A virus-induced macrophage defect, J. Immunol. 117:1004–1009 (1976).PubMedGoogle Scholar
  58. 58.
    Wilson, J. D., H. E. Webb, N. M. Molomut, and M. Padnos, Depression of PHA response in patients during therapeutic infection with MP virus, Interirology 2:41–47 (1973/ 1974).CrossRefGoogle Scholar
  59. 59.
    Holterman, O. A., and J. A. Majde, An apparent histoincompatibility between mice chronically infected with LCMV and their uninfected syngeneic counterparts, Transplantation 11:20–29 (1971).CrossRefGoogle Scholar
  60. 60.
    Carballal, G., J. R. Oubina, S. N. Rondinone, B. Eisner, and M. J. Frigerio, Cell-mediated immunity and lymphocyte populations in experimental Argentine hemorrhagic fever (Junin virus), Infect. Immun. 34:323–327 (1981).PubMedGoogle Scholar
  61. 61.
    Tosolini, F. A., and C. A. Mims, Effect of murine and viral strain on the pathogenesis of lymphocytic choriomeningitis infection and a study of footpad responses, J. Infect. Dis. 123:134–144 (1971).PubMedCrossRefGoogle Scholar
  62. 62.
    Zinkernagel, R. M., and P. C. Doherty, MHC-restricted cytotoxic T cells: Studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness, Adv. Immunol. 27:51 –177 (1979).PubMedCrossRefGoogle Scholar
  63. 63.
    Walker, C. M., W. E. Rawls, and K. L. Rosenthal, Generation of memory cell-mediated immune responses after secondary infection of mice with Pichinde virus, /. Immunol. 132:469–474 (1984).Google Scholar
  64. 64.
    Barrios, H. A., S. N. Giovanniello, S. N. Rondinone, O. E. Competella, and N. R. Nota, Passive transfer protection against Junin virus in cyclophosphamide-suppressed mice, Acta Virol. (Praha) 28:343 (1984).Google Scholar
  65. 65.
    Chan, M., D. Clark, and W. E. Rawls, Pichinde virus-specific cell-associated suppression of primary footpad swelling in an inbred strain of Syrian hamsters, J. Immunol. 130:925–931 (1983).PubMedGoogle Scholar
  66. 66.
    Cole, G. A., R. A. Prendergast, and C. S. Henney, In vitro correlates of LCM virus-induced immune response, in: Lymphocytic Choriomeningitis Virus and Other Arenaviruses (F. Lehmann-Grube, ed.), pp. 61–71, Springer-Verlag, Berlin (1973).CrossRefGoogle Scholar
  67. 67.
    Marker, O., and M. Volkert, In vitro measurement of the time course of cellular immunity to LCM virus in mice, in: Lymphocytic Choriomeningitis Virus and Other Arenaviruses (F. Lehmann-Grube, ed.), pp. 207–216, Springer-Verlag, Berlin (1973).CrossRefGoogle Scholar
  68. 68.
    Volkert, M., K. Bro-Jørgensen, O. Marker, B. Rubin, and L. Trier, The activity of T and B lymphocytes in immunity and tolerance to the lymphocytic choriomeningitis virus in mice, Immunology 29:455–464 (1975).PubMedGoogle Scholar
  69. 69.
    Cihak, J., and F. Lehmann-Grube, Immunological tolerance to lymphocytic choriomeningitis virus in neonatally infected virus carrier mice: evidence supporting a clonal inactivation mechanism, Immunology 34:265–275 (1978).PubMedGoogle Scholar
  70. 70.
    Popescu, M., and D. H. Ostrow, Multiplication of lymphocytic choriomeningitis virus in thymocytes during its persistence in mice, J. Gen Virol. 61:293–298 (1982).PubMedCrossRefGoogle Scholar
  71. 71.
    Zinkernagel, R. M., and P. C. Doherty, Indications of active suppression in mouse carriers of lymphocytic choriomeningitis virus, in: Immunological Tolerance (D. H. Katz and B. Benacerraf, eds.), pp. 403–411, Academic, New York (1974).Google Scholar
  72. 72.
    Dunlop, M. B. C., and R. V. Blanden, Mechanisms of suppression of cytotoxic T-cell responses in murine lymphocytic choriomeningitis virus infection, J. Exp. Med. 145:1131 –1143 (1977).PubMedCrossRefGoogle Scholar
  73. 73.
    Ahmed, R., A. Salmi, L. D. Butler, J. M. Chiller, and M. B. A. Oldstone, Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte responses and viral persistence, J. Exp. Med. 60:521–540 (1984).CrossRefGoogle Scholar
  74. 74.
    Bro-Jørgensen, K., and S. Knudtzon, Changes in hemopoiesis during the course of acute LCM virus infection in mice, Blood 49:47–57 (1977).PubMedGoogle Scholar
  75. 75.
    Hanaoka, M., S. Suzuki, and J. Hotchin, Thymus-dependent lymphocytes: Destruction by lymphocytic choriomeningitis virus, Science 163:1216–1219 (1969).PubMedCrossRefGoogle Scholar
  76. 76.
    Thomas, A. R., K. Bro-Jørgensen, and B. L. Jensen, Lymphocytic choriomeningitis virus-induced immunosuppression: Evidence for viral interference with T-cell maturation, Infect. Immun. 37:981–986 (1982).Google Scholar
  77. 77.
    Bro-Jørgensen, K., and M. Volkert, Haemopoietic defects in mice infected with lymphocytic choriomeningitis virus. 1. The enhanced x-ray sensitivity of virus infected mice, Acta Pathol. Microbiol. Scand. B 80:845–852 (1972).Google Scholar
  78. 78.
    Bro-Jørgensen, K., and M. Volkert, Haemopoietic defects in mice infected with lymphocytic choriomeningitis virus. 2. The viral effect upon the function of colony-forming stem cells, Acta Pathol. Microbiol. Scand. B 80:853–862 (1972).Google Scholar
  79. 79.
    Schwartz, R., J. Löhler, and F. Lehmann-Grube, Infection of cultivated mouse peritoneal macrophages with lymphocytic choriomeningitis virus, J. Gen. Virol. 39:565–570 (1978).PubMedCrossRefGoogle Scholar
  80. 80.
    Yarborough, D. J., O. T. Meyer, A. M. Dannenberg, Jr., and B. Pearson, Histochemistry of macrophage hydrolases. III. Studies on ß-galactosidase, ß-glucuronidase and aminopeptidases with inodyl and naphthyl substrates, J. Reticuloendothel. Soc. 4:390–408 (1967).Google Scholar
  81. 81.
    Allison, A., Lysosomes in virus-infected cells, in: Perspectives in Virology ,Vol. V (V. M. Pollard, ed.), pp. 29–62, Academic, New York (1967).Google Scholar
  82. 82.
    Gledhill, A. W., D. L. J. Bilbey, and J. S. F. Niven, Effect of certain murine pathogens on phagocytic activity, Br. J. Pathol. 46:433–442 (1965).Google Scholar
  83. 83.
    Bro-Jørgensen, K., The interplay between lymphocytic choriomeningitis virus, immune function and hemopoiesis in mice, Adv. Viral Res. 22:327–369 (1978).CrossRefGoogle Scholar
  84. 84.
    Friedlander, A. M., P. B. Jahrling, P. Merrill, and S. Tobery, Inhibition of mouse peritoneal macrophage DNA synthesis by infection with the arenavirus Pichinde, Infect. Immun. 43:283–288 (1984).PubMedGoogle Scholar
  85. 85.
    Gonzalez, P. H., J. S. Lampuri, C. E. Coto, and R. P. Laguens, In vitro infection of murine macrophages with Junin virus, Infect. Immun. 35:356–358 (1982).PubMedGoogle Scholar
  86. 86.
    Welsh, R. M., Jr., Cytotoxic cells induced during lymphocytic choriomeningitis virus infection of mice. I. Characterization of natural killer cell induction, J. Exp. Med. 148:163–181 (1978).PubMedCrossRefGoogle Scholar
  87. 87.
    Gee, S. R., D. A. Clark, and W. E. Rawls, Differences between Syrian hamsters strains in natural killer cell activity induced by infection with Pichinde virus, J. Immunol. 123:2618–2626 (1979).PubMedGoogle Scholar
  88. 88.
    Welsh, R. M., and R. Kiessling, Natural killer cell response to lymphocytic choriomeningitis virus in beige mice, Scand. J. Immunol. 11:363–367 (1980).PubMedCrossRefGoogle Scholar
  89. 89.
    Bukowski, J. F., B. A. Woda, S. Habu, K. Okumura, and R. M. Welsh, Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo, J. Immunol. 131:1531–1538 (1983).PubMedGoogle Scholar
  90. 90.
    Silberman, S. L., R. P. Jacobs, and G. A. Cole, Mechanisms of hemopoietic and immunological dysfunction induced by lymphocytic choriomeningitis virus, Infect. Immun. 19:533–539 (1978).PubMedGoogle Scholar
  91. 91.
    Lehmann-Grube, F., F. Tijerina, W. Zeller, U. C. Chaturvedi, and J. Löhler, Age-dependent susceptibility of murine T lymphocytes to lymphocytic choriomeningitis virus, J. Gen. Virol. 64:1157–1166 (1983).PubMedCrossRefGoogle Scholar
  92. 92.
    Merigan, T. C., M. B. A. Oldstone, and R. M. Welsh, Interferon production during lymphocytic choriomeningitis virus infection of nude and normal mice, Nature (Lond.) 268:67–68 (1977).CrossRefGoogle Scholar
  93. 93.
    Kiessling, R., P. S. Hochman, O. Haller, G. M. Shearer, H. Wigzell, and G. Cudkowicz, Evidence for a similar or common mechanism for natural killer cell activity and resistance to haematopoietic grafts, Eur. J. Immunol. 7:655–663 (1977).PubMedCrossRefGoogle Scholar
  94. 94.
    Riccardi, C., A. Santoni, T. Barlozzari, and R. B. Herberman, In vivo reactivity of mouse natural killer (NK) cells against normal bone marrow cells, Cell. Immunol. 60:136–143 (1981).PubMedCrossRefGoogle Scholar
  95. 95.
    deMaeyer, E., Interferon and delayed-type hypersensitivity to viral antigen, J. Infect. Dis. 133:A63–A65 (1976).CrossRefGoogle Scholar
  96. 96.
    Fink, P. J., I. L. Weissman, and M. J. Bevan, Haplotype-specific suppression of cytotoxic T cell induction by antigen inappropriately presented on T cells, J. Exp. Med. 157:141–154 (1983).PubMedCrossRefGoogle Scholar
  97. 97.
    Hoffenbach, A., P. H. Lagrange, and M. A. Bach, Influence of dose and route of Mycobacterium lepraemurìum inoculation on the production of interleukin 1 and interleukin 2 in C57 B1/6 mice, Infect. Immun. 44:665–671 (1984).PubMedGoogle Scholar
  98. 98.
    Anderson, J., J. A. Byrne, R. Schreiber, S. Patterson, and M. B. A. Oldstone, Biology of cloned cytotoxic T lymphocytes specific for lymphocytic choriomeningitis virus: Clearance of virus and in vitro properties, J. Virol. 53:552–560 (1985).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Kathryn E. Wright
    • 1
  • William E. Rawls
    • 2
  1. 1.Scripps Clinic and Research FoundationLa JollaUSA
  2. 2.Department of PathologyMcMaster UniversityHamiltonCanada

Personalised recommendations