Advertisement

Immunosuppression by Avian Infectious Bursal Disease Virus and Mouse Hepatitis Virus

  • Jagdev M. Sharma
  • J. M. Dupuy
  • L. Lamontagne
Part of the Infectious agents and pathogenesis book series (IAPA)

Abstract

This chapter briefly discusses two viruses that infect diverse species of animals but that share an important similarity in that both viruses are lymphotropic and cause profound immunosuppression in their respective hosts. Infectious bursal disease (IBD) of chickens, also referred to as Gumboro disease, is an eco nomically important disease of commercial chickens. In unprotected chickens, the IBD virus (IBDV) rapidly destroys the lymphocyte population in the bursa of Fabricius, the principal organ that regulates humoral immunity in the chicken. Continued economic loss due to IBD in the field and recent general interest in viral immunosuppression have stimulated renewed efforts in understanding the characteristics of the immunosuppressive effects of this disease. The mouse hepatitis virus (MHV), also a common infection in laboratory mouse colonies, causes a debilitating disease accompanied by severe immunosuppression. The influence of MHV on immune functions of the host seems to be related to a close interaction between virus particles and host lymphoid cells.

Keywords

Newcastle Disease Infectious Bronchitis Virus Carbonyl Iron Infectious Bursal Disease Virus Mixed Lymphocyte Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hirai, K., N. Kato, A. Fujiura, and S. Shimakura, Further morphological characterization and structural proteins of infectious bursal disease virus, J. Virol. 32:323–328 (1979).PubMedGoogle Scholar
  2. 2.
    Muller, H., C. Scholtissek, and H. Becht, The genome of infectious bursal disease virus consists of two segments of double stranded RNA, J. Virol. 31:584–589 (1979).PubMedGoogle Scholar
  3. 3.
    Azad, A. A., S. A. Barrett, and K. J. Fahey, The characterization and molecular cloning of the double-stranded RNA genome of an Australian strain of infectious bursal disease virus, Virology 143:35–44 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    Fahey, K. J., I. J. O’Donnell, and A. A. Azad, Characterization by Western blotting of the immunogens of infectious bursal disease virus, J. Gen. Virol. 66:1479–1488 (1985).Google Scholar
  5. 5.
    Hitchner, S. B., Infectivity of infectious bursal disease virus for embryonating eggs, Poultry Sci. 49:511–516 (1970).Google Scholar
  6. 6.
    Lukert, P. D., and R. B. Davis, Infectious bursal disease virus: Growth and characteriza tion in cell cultures, Avian Dis. 18:243–250 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    McFerran,J. B., M. S. McNutty, E. R. McKillop, T. J. Conner, R. M. McCracken, D. S., Collins, and G. M. Allan, Isolation and serological studies with infectious bursal disease virus from fowl, turkeys and ducks: Demonstration of a second serotype, Avian Pathol. 9:395–403 (1980).Google Scholar
  8. 8.
    Jackwood, D. J., Y. M. Saif, and J. H. Hughes, Characteristics and serologic studies of two serotypes of infectious bursal disease virus in turkeys, Avian Dis. 26:871–882 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    Cosgrove, A. S. ,An apparently new disease of chickens-Avian nephrosis, Avian Dis. 6:385–389 (1962).CrossRefGoogle Scholar
  10. 10.
    Cheville, N. F., Studies on the pathogenesis of Gumboro disease in the bursa of Fabricius, spleen and thymus of the chicken, Am. J. Pathol. 51:527–551 (1967).Google Scholar
  11. 11.
    Hirai, K., and B. W. Calnek, In vitro replication of infectious bursal disease virus in established lymphoid cell lines and chicken B lymphocytes, Infect. Immun. 25:964–970 (1979).PubMedGoogle Scholar
  12. 12.
    Hudson, L., M. Pattison, and N. Thantrey, Specific B lymphocyte suppression by infectious bursal agent (Gumboro virus) in chickens, Eur. J. Immunol. 5:675–679 (1975).PubMedCrossRefGoogle Scholar
  13. 13.
    Hirai, K., K. Kunihiro, and S. Shimakura, Characterization of immunosuppression in chickens by infectious bursal disease virus, Avian Dis. 23:950–965 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    Sivanandan, V., and S. K. Maheswaran, Immune profile of infectious bursal disease. I. Effect of infectious bursal disease virus on peripheral blood T and B lymphocytes of chickens, Avian Dis. 24:715–725 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    Allan, W. H., J. T. Farraghar, and G. A. Cullen, Immunosuppression by infectious bursal agent in chickens immunized against Newcastle disease, Vet. Rec. 90:511–512 (1972).PubMedCrossRefGoogle Scholar
  16. 16.
    Ivanyi, J., and R. Morris, Immunodeficiency in the chicken. IV. An immunological study of infectious bursal disease, Clin. Exp. Immunol. 23:154–165 (1976).PubMedGoogle Scholar
  17. 17.
    Giambrone, J. J., C. S. Eidson, and S. H. Kleven, Effect of infectious bursal disease on the response of chickens to Mycoplasma synoviae ,Newcastle disease virus and infectious bron chitis virus, Am. J. Vet. Res. 38:251–253 (1977).Google Scholar
  18. 18.
    Giambrone, J. J., J. P. Donahoe, D. L. Dawe, and C. S. Eidson, Specific suppression of the bursa-dependent immune system of chicks with infectious bursal disease virus, Am. J. Vet. Res. 38:581–583 (1977)PubMedGoogle Scholar
  19. 19.
    Anderson, W., W. M. Reid, and P. D. Lukert, Influence of infectious bursal disease on the development of immunity to Eimeria tenella, Avian Dis. 21:637–641 (1978).CrossRefGoogle Scholar
  20. 20.
    Hopkins, I. G., K. R. Edwards, and D. H. Thornton, Measurement of immunosuppression in chickens caused by infectious bursal disease vaccines using Brucella abortus strain 19, Res. Vet. Sci. 27:260–261 (1979).PubMedGoogle Scholar
  21. 21.
    Pejkovski, C., F. G. Develaar, and B. Kouwenhoven, Immunosuppressive effect of infectious bursal disease virus on vaccination against infectious bronchitis, Avian Pathol. 8:95– 106 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    Faragher, J. T., W. H. Allen, and C. J. Wyeth, Immunosuppressive effect of infectious bursal agent on vaccination against Newcastle disease, Vet. Rec. 95:385–388 (1974).PubMedCrossRefGoogle Scholar
  23. 23.
    Ivanyi, J., Polymorphism of chicken serum allotypes, J. Immunogenet. 2:87–107 (1975).CrossRefGoogle Scholar
  24. 24.
    Kaufer, I., and E. Weiss, Significance of bursa of Fabricius as target organ in infectious bursal disease of chickens, Infect. Immun. 27:364–367 (1980).PubMedGoogle Scholar
  25. 25.
    Sharma, J. M., Effect of infectious bursal disease virus on protection against Marek’s disease by turkey herpesvirus vaccine, Avian Dis. 28:629–640 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    McDonald, L. R., T. Karlson, and W. M. Reid, Interaction of infectious bursal disease and coccidiosis in layer replacement chickens, Avian Dis. 24:999–1005 (1980).Google Scholar
  27. 27.
    Panigraphy, B., L. K. Misra, S. A. Naqi, and C. F. Hall, Prolongation of skin graft survival in chickens with infectious bursal disease, Poultry Sci. 56:1745 (1977).Google Scholar
  28. 28.
    Sivanandan, V., and S. K. Maheswaran, Immune profile of infectious bursal disease. III. Effect of infectious bursal disease on the lymphocyte responses to phytomitogens and on mixed lymphocyte reaction of chickens, Avian Dis. 25:112–121 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    Confer, A., and P. S. Mac Williams, Correlation of hematological changes and serum and monocyte inhibition with the early suppression of phytohemagglutinin stimulation of lymphocytes in experimental infectious bursal disease, Can. J. Comp. Med. 46:169–175 (1982).PubMedGoogle Scholar
  30. 30.
    Confer, A. W., W. T. Springer, S. M. Shane, and J. F. Donovan, Sequential mitogen stimulation of peripheral blood lymphocytes from chickens inoculated with infectious bursal disease virus, Am. J. Vet. Res. 452:2109–2113 (1981).Google Scholar
  31. 31.
    Sharma, J. M., and L. F. Lee, Effect of infectious bursal disease on natural killer cell activity and mitogenic response of chicken lymphoid cells: Role of adherent cells in cellular immune suppression, Infect. Immun. 42:747–754 (1983).PubMedGoogle Scholar
  32. 32.
    Santivatr, D. S. K. Maheswaran, J. A. Newman, and B. S. Pomeroy, Effect of infectious bursal disease virus infection on the phagocytosis of Staphylococcus aureus by mononuclear phagocytic cells of susceptible and resistant strains of chickens, Avian Dis. 25:303–311 (1981).PubMedCrossRefGoogle Scholar
  33. 33.
    Gelb, J. ,C. S. Eidson, O.J. Fletcher, and S. H. Kleven, Studies on interferon induction by infectious bursal disease virus (IBDV). II. Interferon production in White Leghorn chick ens infected with an attenuated or pathogenic isolant of IBDV, Avian Dis. 23:634–645 (1979).Google Scholar
  34. 34.
    Blaese, R. M., A. V. Muchmore., I. Koski., and N. J. Dooley, Infectious agammaglobulinemia: Suppressor T cells with specificity for individual immunoglobulin classes, Adv. Exp. Biol. 88:155–159 (1977).Google Scholar
  35. 35.
    Sharma, J. M., and T. Fredericksen, Mechanism of T cell immunosuppression by infectious bursal disease virus of chickens, in: Avian Immunology. Vol. II W. T. Weber and D. L. Ewert, eds., pp. 283–294, Liss, New York (1987).Google Scholar
  36. 36.
    Tyrrell, D. A. J., J. D. Almeida, D. M. Berry, C. H., Hamre, M. S. Hofstad, L. Malluci, and K. Mcintosh, Coronaviruses, Nature (Lond.) ,220:650 (1968)Google Scholar
  37. 37.
    Hajer, I., and J. Storz, Antigens of bovine coronavirus strain LY-138 and their diagnostic properties, Am. J. Vet. Res. 39:441–444 (1978).PubMedGoogle Scholar
  38. 38.
    Yaseen, S. A., and M. Johnson-Lussenburg, Antigenic studies on coronavirus. I. Identification of the structural antigens of human coronavirus strain 229E, Can. J. Microbiol. 27:334–342 (1981).Google Scholar
  39. 39.
    Garwes, D. I., M. H. Lucas, D. A. Higgins, B. V. Pike, and S. F. Cartwright, Antigenicity of structural components from porcine transmissible gastroenteritis virus, Vet. Microbiology 3:179–190 (1979).CrossRefGoogle Scholar
  40. 40.
    McNaughton, M. R., H. J. Hasony, and S. Reed, Antibody to virus components in volunteers experimentally infected with human coronaviruses 229E group viruses, Infect. Immun. 31:845–849 (1981).Google Scholar
  41. 41.
    Schmidt, O. W., and G. E. Kenny, Immunogenicity and antigenicity of human coronavirus 229E and OC43, Infect. Immun. 32:1000–1006 (1981).PubMedGoogle Scholar
  42. 42.
    Weiss, S. R., and J. L. Leibowitz, Comparison of the RNAs of murine human coronaviruses, in: Biochemistry and Biology of Coronaviruses (V. Ter Meulen, S. Siddell, and H. Wege, eds.), pp. 245–259, Plenum, New York (1981).Google Scholar
  43. 44.
    Wege, H., J. R. Stephenson, M. Koga, and V. Ter Meulen, Genetic variation of neurotropic and non-neurotropic murine coronaviruses, J. Gen. Virol. 54:67–74 (1981).PubMedCrossRefGoogle Scholar
  44. 45.
    Robb, J. A., and C. W. Bond, Coronaviridae, in: Comprehensive Virology (H. Fraenkel-Conrat and R. R. Wagner, eds.), pp. 193–247, Plenum, New York (1979).Google Scholar
  45. 46.
    Lomniczi, B., and I. Kennedy, Genome of infectious bronchitis virus, J. Virol. 24:99–107 (1977).PubMedGoogle Scholar
  46. 47.
    Lai, M. M. C., and S. A. Stohlman, Genomic structure of mouse hepatitis virus: Comparative analysis by oligonucleotide mapping, in: Biochemistry and Biology of Coronaviruses (V. Ter Meulen, S. Siddell, and H. Wege, eds.), pp. 69–82, Plenum, New York (1981).Google Scholar
  47. 48.
    Yogo, Y., N. Hirano, H. Shibuta, and M. Matumoto, Polyadenylate in the virion RNA of mouse hepatitis virus, J. Biochem. (Tokyo) 82:1103–1108 (1977).PubMedGoogle Scholar
  48. 49.
    McNaughton, M. R., and M. H. Madge, The genome of human coronavirus strain 229E, /. Gen. Virol. 39:497–504 (1978).CrossRefGoogle Scholar
  49. 50.
    Jacobs, L., W. J. M. Spaan, M. E. Horzinek, and B. A. M. Van der Zeijst, Synthesis of subgenomic mRNA of mouse hepatitis virus is initiated independently: Evidence from UV transcription mapping, J. Virol 39:401–406 (1981).PubMedGoogle Scholar
  50. 51.
    Stern, D. F., and B. M. Sefton, Synthesis of coronavirus mRNAs: Kinetics of inactivation of infectious bronchitis virus RNA synthesis by UV light, J. Virol 42:755–759 (1982).PubMedGoogle Scholar
  51. 52.
    Lai, M. M. C., C. D. Patton, and S. A. Stohlman, Replication of mouse hepatitis virus: Negative-stranded RNA and replicative form RNA are a genome length, J. Virol. 44:487–492 (1982).PubMedGoogle Scholar
  52. 53.
    Rottier, P. J. M., M. C. Horzinek, and B. A. M. Van der Zeijst, Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: Effect of Tunicamycin, J. Virol. 40:350– 357 (1981).PubMedGoogle Scholar
  53. 54.
    Leibowitz, J. L., S. R. Weiss, E. Paavola, and C. W. Bond, Cell-free translation of murine coronavirus RNA, J. Virol. 43:905–913 (1982).PubMedGoogle Scholar
  54. 55.
    Siddell, S. G., Coronavirus JHM: Coding assignment of subgenomic mRNAs, J. Gen. Virol. 64:113–125 (1983).PubMedCrossRefGoogle Scholar
  55. 56.
    Siddell, S. G., H. Wege, and V. Ter Meulen, The structure and replication of coro-naviruses, Curr. Topics Microbiol. Immunol. 99:131–163 (1982).CrossRefGoogle Scholar
  56. 57.
    Siddell, S. G., S. G. Barthel, and V. Ter Meulen, Coronavirus JHM: A virion-associated protein kinase, J. Gen. Virol. 52:235–243 (1981).PubMedCrossRefGoogle Scholar
  57. 58.
    Armstrong, J., S. Smeekens, and P. Rottier, Sequence of the nucleocapsid gene from murine coronavirus MHV-A59, Nucleic Acid Res. 11:883–891 (1983).PubMedCrossRefGoogle Scholar
  58. 59.
    Sturman, L. S., Characterization of a coronavirus. I. Structural proteins’ effects on pre parative conditions on the migration of protein in polyacrylamide gels, Virology. 77:637–649 (1977).PubMedCrossRefGoogle Scholar
  59. 60.
    Sturman, L. S, The structure and behaviour of coronavirus A59 glycoprotein, in: Biochemistry and Biology of Coronaviruses (V. Ter Meulen, S. Siddell, and H. Wege, eds.), pp. 1–18, Plenum, New York (1981).Google Scholar
  60. 61.
    Sturman, L. S., K. V. Holmes, and J. Behnke, Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsids, J. Virol. 33:449–462 (1980).PubMedGoogle Scholar
  61. 62.
    Sturman, L. S., and K. V. Holmes, Characterization of a coronavirus. II. Glycoproteins of the viral envelope: Tryptic peptide analysis, Virology 77:650–660 (1977).PubMedCrossRefGoogle Scholar
  62. 63.
    Sturman, L. S., and K. V. Holmes, Proteolytic cleavage of peplomeric glycoprotein E2 of MHV yields two 90K subunits and activates fusion, in: Molecular Biology and Pathogenesis of Coronaviruses (P. M. J. Rottier, B. A. M. Van der Zeijst, W. J. M. Spaan, and M. C. Horzinek, eds.), pp. 25–35, Plenum, New York (1984).Google Scholar
  63. 64.
    Cheever, F. S., J. B. Daniels, A. M. Pappenheimer, and O. T. Bailey, A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin, J. Exp. Med. 90:181–194 (1949).PubMedCrossRefGoogle Scholar
  64. 65.
    Le Prevost, C., E. Levy-Leblond, J. L. Virelizier, and J. M. Dupuy, Immunopathology of mouse hepatitis virus type 3 infection. I. Role of humoral and cell-mediated immunity in resistance mechanisms, J. Immunol. 114:221–225 (1975).PubMedGoogle Scholar
  65. 66.
    Piazza, M., G. Pane, and F. De Ritis, The fate of MHV-3 after intravenous injection into susceptible mice, Arch. Ges. Virusforsch. 22:472–475 (1967).PubMedCrossRefGoogle Scholar
  66. 67.
    Le Prevost, C., J. L. Virelizier, and J. M. Dupuy, Immunopathology of mouse hepatitis virus type 3 infection. III. Clinical and mitogenic observations of a persistant virus infection,/ Immunol. 115:640–643 (1975).Google Scholar
  67. 68.
    Dupuy, J. M., E. Levy-Leblond, and C. Le Prevost, Immunopathology of mouse hepatitis virus type 3 infection. II. Effect of immunosuppression in resistant mice, J. Immunol. 114:226–230 (1975).PubMedGoogle Scholar
  68. 69.
    Bang, F. B., and A. Warwick, Mouse macrophages as host cells for the mouse hepatitis virus and the genetic basis of their susceptibility, Proc. Natl. Acad. Sci. USA 46:1065–1075 (1960).PubMedCrossRefGoogle Scholar
  69. 70.
    Levy-Leblond, E., D. Oth, and J. M. Dupuy, Genetic study of mouse sensitivity to MHV-3 infection: Influence of the H-2 complex, J. Immunol. 112:1359–1362 (1979).Google Scholar
  70. 71.
    Oth, D., D. Pekovic, V. Cainelli-Gebara, and J. M. Dupuy, Expression of H-2K antigens in brain lesions, and influence of H-2K gene on susceptibility to paralysis, in MHV3 infected mice, in: Genetic Control of Host Resistance to Infection and Malignancy (E. Skamene and P. Kongshavn, eds.), pp. 135–140, Liss, New York (1985).Google Scholar
  71. 72.
    Leray, D., C. Dupuy, and J. M. Dupuy, Immunopathology of mouse hepatitis virus type 3 infection. IV. MHV3-induced immunosuppressions, Clin. Immunol. Immunopathol. 23:1457–1465 (1982).CrossRefGoogle Scholar
  72. 73.
    Virelizier, J. L., A. D. Dayan, and A. C. Allison, Neuropathological effects of persistent infection of mice by mouse hepatitis virus, Infect. Immun. 12:1127–1140 (1975).PubMedGoogle Scholar
  73. 74.
    Levy, G., R. Shaw, J. L. Leibowitz, and E. Cole, The immune response to mouse hepatitis virus infection: Genetic variation in antibody response and disease, in: Molecular Biology and Pathogenesis of Coronaviruses (P. J. M. Rottier, B. A. M. Van der Zeijst, W. J. M. Spaan, and M. C. Horzinek, eds), pp. 345–364, Plenum, New York (1984).Google Scholar
  74. 75.
    Sorensen, O., S. Beushausen, S. Puchalski, S. Cheley, R. Anderson, M. Coulter-Mackie, and S. Dales, In vivo and in vitro models of demyelinating disease. VIII. Genetic, immu nologic and cellular influences on JHM virus infection of rats, in: Molecular Biology and Pathogenesis of Coronaviruses (P. J. M. Rottier, B. A. M. Van der Zeijst, W. J. M. Spaan, and M. Horzinek, eds.), pp. 279–298, Plenum, New York (1984).Google Scholar
  75. 76.
    Wege, H., R. Watanabe, and V. Ter Meulen, Virological and immunological aspects of coronavirus induced subacute demyelinating encephalomyelitis in rats, in: Molecular Biology and Pathogenesis of Coronaviruses (P. J. M. Rottier, B. A. M. Van der Zeijst, W. J. M. Spaan, and M. Horzinek, eds.), pp. 259–270, Planum, New York (1984).Google Scholar
  76. 77.
    Krzystyniak, K., and J. M. Dupuy, Immunodepression of lymphocyte response in mouse hepatitis virus 3 infection, Biomed. Pharmacol. 37:68–74 (1983).Google Scholar
  77. 78.
    Dupuy, J. M., C. Dupuy, and D. Decarie, Genetically determined resistance to mouse hepatitis virus 3 is expressed in hematopoietic donor cells in radiation chimeras, J. Immunol. 133:1609–1613 (1984).PubMedGoogle Scholar
  78. 79.
    Lamontagne, L., and J. M. Dupuy, Natural resistance of mice to mouse hepatitis virus type 3 infection is expressed in embryonic fibroblast cells, J. Gen. Virol. 65:1165–1171 (1984).PubMedCrossRefGoogle Scholar
  79. 80.
    Lamontagne, L. and J. M. Dupuy, Persistent infection with mouse hepatitis virus 3 in mouse lymphoid cell lines, Infect. Immun. 44:716–723 (1984).PubMedGoogle Scholar
  80. 81.
    Taguchi, F., N. Hirano, Y. Kiuchi, and K. Fujiwara, Difference in response to mouse hepatitis virus among susceptible mouse strains, Jpn. J. Microbiol. 20:293–302 (1976).PubMedGoogle Scholar
  81. 82.
    Weiser, W., and F. B. Bang, Macrophages genetically resistant to mouse hepatitis virus converted in vitro to susceptible macrophages, J. Exp. Med. 143:690–695 (1976).PubMedCrossRefGoogle Scholar
  82. 83.
    Taylor, C. E., W. Y. Weiser, and F. B. Bang, In vitro macrophage manifestation of cortisone-induced decrease in resistance to mouse hepatitis virus, J. Exp. Med. 153:732– 737 (1981).PubMedCrossRefGoogle Scholar
  83. 84.
    Taguchi, F., A. Yamada, and K. Fujiwara, Resistance to highly virulent mouse hepatitis virus acquired by mice after low-virulence infection: Enhanced antiviral activity of macrophages, Infect. Immun. 29:42–49 (1980).PubMedGoogle Scholar
  84. 85.
    Weiser, W. Y., and F. B. Bang, Blocking of in vitro and in vivo susceptibility to mouse hepatitis virus, J. Exp. Med. 146:1467–1472 (1977).PubMedCrossRefGoogle Scholar
  85. 86.
    Arnheiter, H., T. Baechi, and O. Haller, Adult mouse hepatocytes in primary monolayer culture express genetic resistance to mouse hepatitis virus type 3, J. Immunol. 129:1275–1281 (1982).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jagdev M. Sharma
    • 1
  • J. M. Dupuy
    • 2
  • L. Lamontagne
    • 2
  1. 1.Regional Poultry Research Laboratory, Agricultural Research ServiceU. S. Department of AgricultureEast LansingUSA
  2. 2.Immunology Research Center, Institute Armand-FrappierUniversity of QuebecCanada

Personalised recommendations