Advertisement

Inelastic Scattering Effects in RHEED and Reflection Imaging

  • A. L. Bleloch
  • A. Howie
  • R. H. Milne
  • M. G. Walls
Part of the NATO ASI Series book series (NSSB, volume 188)

Abstract

Although the very first work on the dynamical theory of electron diffraction (Bethe[1]), dealt with RHEED geometry (the so-called Bragg case), progress in developing a completely satisfactory theory has been rather slow. Recent spectacular results e.g. REM images of surface structures, Osakabe et al[2,3], and RHEED oscillations in MBE, Neave et al[4], together with the increasing number of studies with clean surfaces, may however spur the theoreticians. In somewhat similar circumstances several decades ago, rapid advances took place in transmission electron diffraction (the Laue case) largely as a result of the enormous growth in transmission microscopy, Hirsch et al[5]. Real space, diffraction contrast images and later, high resolution structure images, of both perfect and imperfect crystals can now be interpreted in enormous and quantitative detail almost as a matter or routine.

Keywords

Inelastic Scattering Scanning Transmission Electron Microscope Bloch Wave Diffraction Contrast Slice Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. A. Bethe, Ann.Phys.Lpz. 87:55 (1928).ADSCrossRefGoogle Scholar
  2. 2.
    N. Osakabe, Y. Tanishiro, K. Yagi, and G. Honjo, Image contrast of dislocations and atomic steps on (111) Silicon surface in reflection electron microscopy, Surface Sci. 102:424 (1981a).CrossRefGoogle Scholar
  3. 3.
    N. Osakabe, Y. Tanishiro, K. Yagi, and G. Honjo, Direct observation of phase transition between the (7×7) and (1×1) structures of clean (111) silicon surfaces, Surface Sci. 109:353 (1981b).ADSCrossRefGoogle Scholar
  4. 4.
    J. H. Neave, B. A. Joyce, P. J. Dobson, and N. Norton, Dynamics of film growth of GaAs by MBE from RHEED observations, Appl.Phys. A31:l (1983).Google Scholar
  5. 5.
    P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, “Electron Microscopy of Thin Crystals,” Krieger, New York, (1977).Google Scholar
  6. 6.
    A. Howie, Inelastic scattering of electrons by crystals, Proc.Roy.Soc. A271:268 (1963).ADSGoogle Scholar
  7. 7.
    S. L. Cundy, A. Howie, and U. Valdre, Preservation of electron microscope image contrast after inelastic scattering, Phil.Mag. 20:147 (1969).ADSCrossRefGoogle Scholar
  8. 8.
    C. J. Humphreys and P. B. Hirsch, Absorption parameters in electron diffraction theory, Phil.Mag. 18:115 (1968).ADSCrossRefGoogle Scholar
  9. 9.
    A. Ichimiya and G. Lempfuhl, Analysis of Electron diffraction Kossel patterns, Z.Naturf. 33A:269 (1978).ADSGoogle Scholar
  10. 10.
    R. Voss, G. Lempfuhl and P. J. Smith, Influence of doping on the crystal potential in, Si.Z.Naturf. 35A:973 (1980).ADSGoogle Scholar
  11. 11.
    J. B. Pendry, “Low Energy Electron Diffraction,” Academic Press, New York (1974).Google Scholar
  12. 12.
    P. A. Maksym and J. L. Beeby, A theory of RHEED, Surf.Sci. 110:423 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    P. A. Maksym, Analysis of intensity data for RHEED by the MgO (001) surface, Surface Sci. 149:157 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    C. J. Powell, Characteristic energy losses of 8keV electrons in liquid A1, Bi, In, Ge, Hg and Au. Phys.Rev. 175:972 (1968).ADSCrossRefGoogle Scholar
  15. 15.
    A. Howie and R. H. Milne, Energy loss spectra and reflection images from surfaces, J.Microsc. 136:279 (1984).CrossRefGoogle Scholar
  16. 16.
    A. Howie and R. H. Milne, Excitations at interfaces and small particles, Ultramicrosc. 18:427 (1985).CrossRefGoogle Scholar
  17. 17.
    L. M. Peng and J. M. Cowley, Dynamical diffraction calculations for RHEED and REM. Acta Cryst. A42:545 (1987a).Google Scholar
  18. 18.
    P. M. Echenique and J. B. Pendry, Absorption profile at surfaces J.Phys. C8:2936 (1975).ADSGoogle Scholar
  19. 19.
    D. M. Roessler and W. C. Walker, Electronic spectrum and ultraviolet optical properties of crystalline MgO. Phys.Rev. 159:733 (1967).ADSCrossRefGoogle Scholar
  20. 20.
    A. Howie, R. H. Milne, and M. G. Walls, Dielectric excitations at surfaces and interfaces, Proc.EMAG Conf. Adam Hilger (Bristol), (1985).Google Scholar
  21. 21.
    P. M. Echenique and A. Howie, Image force effects in electron microscopy, Ultramicrosc., 16:269 (1985).CrossRefGoogle Scholar
  22. 22.
    J. M. Cowley, Microdiffraction, STEM imaging and ELS at crystal surface, Ultramicroscopy 9:231 (1982).CrossRefGoogle Scholar
  23. 23.
    R. Garcia-Molina, A. Gras-Marti, A. Howie and R. H. Ritchie, Retardation effects in the interaction of charged particle beams with bounded condensed media, J.Phys., C18:5335 (1985).ADSGoogle Scholar
  24. 24.
    R. H. Milne, and P. M. Echenique, The probability of MgO surface excitations with fast electrons, Solid State Comm. 55:909 (1985).ADSCrossRefGoogle Scholar
  25. 25.
    C. V. Festenberg, Energieverlustmessungen an III-V-Verbindungen Z.Phys. 227:453 (1969).ADSCrossRefGoogle Scholar
  26. 26.
    S. Miyake and K. Hayakaya, Resonance effects in low and high energy electron diffraction by crystals, Acta Cryst. A26:60 (1970).Google Scholar
  27. 27.
    H. Marten and G. Meyer-Ehmsen, Resonance effect in RHEED from Pt(111), Surface Sci., 151:570 (1985).ADSCrossRefGoogle Scholar
  28. 28.
    P. K. Larsen, D. Dobson, J. H. Neave, B. A. Joyce, B. Bolger, and G. Zhang, Dynamic effects in RHEED from MBE grown GaAs (001) surfaces, Surface Sci., 169:176 (1986).ADSCrossRefGoogle Scholar
  29. 29.
    A. Ichimiya, Many-beam calculation of RHEED intensities by the multi-slice method, J.Appl.Phys. 22:176 (1983).CrossRefGoogle Scholar
  30. 30.
    J. C. Slater, Damped electron waves in crystals, Phys.Rev. 51:840 (1937).ADSMATHCrossRefGoogle Scholar
  31. 31.
    J. U. Andersen, K. R. Eriksen and E. Laegsgaard, Planar channeling and coherent bremsstrahlung for MeV electrons, Phys.Scripta 24:588 (1981).ADSCrossRefGoogle Scholar
  32. 32.
    H. Shuman, Bragg diffraction imaging of defects at crystal surfaces, Ultramicrosc. 2:361 (1977).CrossRefGoogle Scholar
  33. 33.
    L. M. Peng, J. M. Cowley, and Hsu Tung, Diffraction contrast in reflection electron microscopy I and II. Micron 18:171,179 (1987b).Google Scholar
  34. 34.
    T. Hsu and L.M. Peng, Experimental studies of atomic step contrast in reflection electron microscopy (REM), Ultramicrosc. 22:217 (1987).CrossRefGoogle Scholar
  35. 35.
    A. Howie, The reciprocity principle in electron microscopy and diffraction, Fifth Eur.Em. Congress p408. Inst, of Phys.London (1972).Google Scholar
  36. 36.
    H. Raether, “Excitations of Plasmons and Interband Transitions by Electrons,” Springer, Berlin (1980).Google Scholar
  37. 37.
    L. D. Marks and D. J. Smith, Direct surface imaging in small metal particles, Nature 303:316 (1983).ADSCrossRefGoogle Scholar
  38. 38.
    P. Goodman and A. Moodie, Numerical evaluation of N-beam wave functions in electron scattering by the slice method. Acta Cryst. A30:280 (1974).Google Scholar
  39. 39.
    G. Grinton and J. M. Cowley, Phase and amplitude contrast in electron micrographs of biological material. Optik 34:223 (1971).Google Scholar
  40. 40.
    A. Howie and Z. S. Basinski, Approximations of the dynamical theory of diffraction contrast, Phil Mag. 17:1039 (1968).ADSCrossRefGoogle Scholar
  41. 41.
    L. D. Marks, Direct atomic imaging of solid surfaces, Surface Sci., 139:281 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • A. L. Bleloch
    • 1
  • A. Howie
    • 1
  • R. H. Milne
    • 1
  • M. G. Walls
    • 1
  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeEngland

Personalised recommendations