Calculation of Rheed Intensity from Growing Surfaces

  • Takaaki Kawamura
Part of the NATO ASI Series book series (NSSB, volume 188)


Reflection high energy electron diffraction (RHEED) is one of the most powerful techniques for structural analysis of surfaces as described by Ino in these proceedings [1]. Several structures have been analyzed such as cleaved MgO(001) [2,3] and hydrogen stabilized Si(001)-1 × 1 surface [4]. In RHEED, the electron beam is incident on the surface at a very small angle. For this particular geometrical condition, the RHEED intensity is quite sensitive to the surface roughness like point defects and steps, which are often present on real surfaces.


Step Edge Reflection High Energy Electron Diffraction Molecular Beam Epitaxy Growth Intensity Oscillation Order Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Ino, see these proceedings.Google Scholar
  2. 2.
    A. Ichimiya, Japan. J. Appl. Phys., 22:176 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    P. A. Maksym, Surface Sci., 149:157 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    J. V. Ashby, N. Norton and P. A. Maksym, Surface Sci., 175:604 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    P. A. Maksym and J. L. Beeby, Surface Sci., 110:423 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    R. Collela, Acta Cryst., A28:ll (1972).Google Scholar
  7. 7.
    C. S. Lent and P. I. Cohen, Surface Sci., 139:121 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    S. V. Ghaisas and A. Madhukar, J. Vac. Sci. Technol., B3:540 (1985).Google Scholar
  9. 9.
    J. L. Beeby, see these proceedings.Google Scholar
  10. 10.
    P. A. Doyle and P. S. Turner, Acta Cryst., A24:390 (1968).Google Scholar
  11. 11.
    J. J. Harris, B. A. Joyce and P. J. Dobson, Surface Sci., 103:L90 (1981).CrossRefGoogle Scholar
  12. 12.
    C. E. C. Wood, Surface Sci., 108:L441 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    J. H. Neave, B. A. Joyce, P. J. Dobson and N. Norton, Appl. Phys., A31:l (1983).Google Scholar
  14. 14.
    J. M. Van Hove, C. S. Lent, P. R. Pukite and P. I. Cohen, J. Vac. Sci. Technol., Bl:741 (1983).Google Scholar
  15. 15.
    J. Zhang, J. H. Neave, P. J. Dobson and B. A. Joyce, Appl. Phys., A24:317 (1987).ADSGoogle Scholar
  16. 16.
    T. Kawamura, P. A. Maksym and T. Iijima, Surface Sci., 148:L671 (1984).CrossRefGoogle Scholar
  17. 17.
    T. Sakamoto, N. J. Kawai, T. Nakagawa, K. Ohta and T. Kojima, Appl. Phys. Lett., 47:617 (1985).ADSCrossRefGoogle Scholar
  18. 18.
    T. Sakamoto, T. Kawamura and G. Hashiguchi, Appi. Phys. Lett., 48:1612 (1986).ADSCrossRefGoogle Scholar
  19. 19.
    T. Kawamura, T. Natori, T. Sakamoto and P. A. Maksym, Surface Sci., 181:L171 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Takaaki Kawamura
    • 1
  1. 1.Department of PhysicsYamanashi UniversityKofu, Yamanashi 400Japan

Personalised recommendations