RHEED Intensity Oscillations in Metal Epitaxy

  • G. Lilienkamp
  • C. Kozioł
  • E. Bauer
Part of the NATO ASI Series book series (NSSB, volume 188)


Following the first reports of RHEED intensity oscillations during molecular beam epitaxy (MBE) of GaAs[l,2] this phenomenon has been studied extensively but the analysis of the intensity oscillations and their physical origin are still a matter of debate[3]. Most of this work was done under near-equilibrium conditions. On the other hand, well-pronounced RHEED intensity oscillations have been observed in Si and Ge molecular beam homo-epitaxy far from equilibrium[4–6]. In the case of Si and Ge the configuration-dependent reactive-incorporation (CDRI) model[7] is clearly not applicable. Instead, the limited diffusion length-induced two-dimensional nucleation model gives a good description of the temperature dependence of the damping of the oscillations[8]. This has also been confirmed by computer simulations[9].


Molecular Beam Epitaxy Molecular Beam Epitaxy Growth Intensity Oscillation RHEED Pattern Metal Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. J. Harris, B. A. Joyce, and P. J. Dobson, Oscillations in the surface structure of Sn-doped GaAs during growth by MBE, Surface Sci. 103:L90 (1981);CrossRefGoogle Scholar
  2. 1a.
    J. J. Harris, B. A. Joyce, and P. J. Dobson, Oscillations in the surface structure of Sn-doped GaAs during growth by MBE, Surface Sci. 108:L444 (1981).CrossRefGoogle Scholar
  3. 2.
    C. E. C. Wood, RED intensity oscillations during MBE of GaAs, Surface Sci., 108:L441 (1981).ADSCrossRefGoogle Scholar
  4. 3.
    B. A. Joyce, J. H. Neave, J. Zhang, and P. J. Dobson, RHEED intensity oscillations during MBE growth of III-V compounds — An overview, this book, p. 397.Google Scholar
  5. 4.
    T. Sakamoto, N. J. Kawai, T. Nakagawa, K. Ohta, and T. Kojima, Intensity oscillations of reflection high-energy electron diffraction during silicon molecular beam epitaxial growth, Appl.Phsy.Lett. 47:617 (1985).ADSCrossRefGoogle Scholar
  6. 5.
    J. Aarts, W. M. Gerits, and P. K. Larsen, Observations of intensity oscillations in reflection high-energy electron diffraction during epitaxial growth of Si(OOl) and Ge(OOl), Appl.Phys.Lett. 48:931 (1986).ADSCrossRefGoogle Scholar
  7. 6.
    J. Aarts and P. K. Larsen, RHEED studies of growing Si and Ge surfaces, this book, p. 449.Google Scholar
  8. 7.
    S. V. Ghaisas and A. Madhukar, Monte-Carlo simulations of MBE growth of III–V semiconductors: The growth kinetics, mechanism, and consequences for the dynamics of RHEED intensity, J.Vac.Sci.Technol. B3:540 (1985).Google Scholar
  9. 8.
    J. H. Neave, P. J. Dobson, B. A. Joyce, and J. Zhang, Reflection high-energy electron diffraction oscillations from vicinal surfaces — a new approach to surface diffusion measurements, Appl.Phys.Lett. 47:100 (1985).ADSCrossRefGoogle Scholar
  10. 9.
    S. Clarke and D. D. Vvedensky, Origin of reflection high-energy electron-diffraction intensity oscillations during molecular beam epitaxy: A computational modeling approach, Phys.Rev.Lett. 58:2235 (1987).ADSCrossRefGoogle Scholar
  11. 10.
    T. Kaneko, M. Imafuku, C. Kokubu, R. Yamamoto, and M. Doyama, The first observation of RHEED intensity oscillation during the growth of Cu/Mo multi-layered films, J.Phys.Soc.Japan 55:2903 (1986).ADSCrossRefGoogle Scholar
  12. 11.
    S. T. Purcell, B. Heinrich, and A. S. Arrott, Intensity oscillations for electron beams reflected during epitaxial growth of metals, Phys.Rev. B 35:6458 (1987).ADSCrossRefGoogle Scholar
  13. 12.
    C. Koziol, G. Lilienkamp, and E. Bauer, Intensity oscillations in reflection high-energy electron diffraction during molecular beam epitaxy of Ni on W(110), Appl.Phys.Lett. 51:901 (1987).ADSCrossRefGoogle Scholar
  14. 13.
    E. Bauer and J. H. van der Merwe, Structure and growth of crystalline superlattices: From monolayer to superlattice, Phys.Rev. B33:3657 (1986).ADSGoogle Scholar
  15. 14.
    J. M. van Hove, P. Pukite, P. I. Cohen, and C. S. Lent, RHEED streaks and instrument repsonse, J.Vac.Sci.Technol. A1:609 (1983).ADSGoogle Scholar
  16. 15.
    H. Marten and G. Meyer-Ehmsen, Resonance effects in RHEED from Pt(111), Surface Sci. 151:570 (1985) and references therein.ADSCrossRefGoogle Scholar
  17. 16.
    C. S. Lent and P. I. Cohen, Surface Sci. 139:121 (1984).ADSCrossRefGoogle Scholar
  18. 17.
    J. KoZaczkiewicz and E. Bauer, The adsorption of Ni on W(110) and (211) surfaces, Surface Sci. 144:495 (1984).ADSCrossRefGoogle Scholar
  19. 18.
    E. Bauer, H. Poppa, G. Todd, and F. Bonczek, Adsorption and condensation of Cu on W single crystal surfaces, J.Appl.Phys. 45:5164 (1974).ADSCrossRefGoogle Scholar
  20. 19.
    G. H. Gilmer, Transients in the rate of crystal growth, J.Crystal Growth 49:465 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • G. Lilienkamp
    • 1
  • C. Kozioł
    • 1
    • 2
  • E. Bauer
    • 1
  1. 1.Physikalisches InstitutTechnische Universität ClausthalClausthal-ZellerfeldGermany
  2. 2.Institute of Experimental PhysicsUniversity of WrocławWrocławPoland

Personalised recommendations