Quantitative Studies of the Growth of Metals on GaAs(110) Using RHEED

  • D. E. Savage
  • M. G. Lagally
Part of the NATO ASI Series book series (NSSB, volume 188)


Reflection high-energy electron diffraction (RHEED) has enjoyed a recent period of significant expansion of interest, due in large measure to its compatibility with molecular-beam epitaxy. Because of the favorable geometry (grazing angles of incidence and exit) it is easy to observe a diffraction pattern and thus to investigate qualitatively aspects of the growth in real time. The major use of RHEED in this sense has been to observe layer-by-layer growth in MBE and thus to calibrate the flux from the effusion source. It is evident from other papers in this volume[1] that a considerable amount of information can be extracted about MBE growth. Most of this work has been restricted to A-on-A systems (e.g. Si-on-Si, Ge-on-Ge, GaAs-on-GaAs) where layer-by-layer growth is the rule rather than the exception. Whereas in principle LEED can as well be used to study layer-by-layer growth in real time by using a grazing geometry (and is then as powerful as RHEED, or even more so[2]), there are overlayer systems in which RHEED is clearly the preferred technique. These are generally B-on-A systems in which the growth does not necessarily proceed by layers, but in which three-dimensional (3-D) crystallite growth and 2-D to 3-D transitions can occur. The ability of RHEED to give a transmission as well as a reflection pattern is the important feature in such measurements [3].


Reciprocal Lattice GaAs Surface Asperity Height RHEED Pattern Atomic Scattering Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See papers in the section on “Electron Diffraction Studies of Growth” beginning pg. 397, this volume.Google Scholar
  2. 2.
    M. G. Lagally, ch. 9 in: “Methods of Experimental Physics: Surfaces,” R.L. Park and M.G. Lagally, eds., Academic, (1985).Google Scholar
  3. 3.
    J. L. Seguin, J. Suzanne, M. Bienfiat, J. G. Dash, and J. A. Venables, Phys.Rev.Letters 51:122 (1983).ADSCrossRefGoogle Scholar
  4. 4.
    For a useful review, see R. J. Voorhoeve, in: “Treatise on Solid State Chemistry,” vol. 6a, N.B. Hannay, ed., Plenum, p. 293. New York, (1976).Google Scholar
  5. 5.
    See for example, R. Kern in: “Current Topics in Materials Science”, vol. 12. E. Kaldis, ed., North-Holland, New York (1985).Google Scholar
  6. 6. a).
    R. Kern, G. Le Lay, J. J. Metois, in: “Current Topics in Materials Science,” vol. 3, E. Kaldis, ed., North-Holland, New York (1979).Google Scholar
  7. 7. b).
    J. A. Venables, G. D. T. Spiller, and M. Hanbucken, Rep.Prog.Phys., 47:399 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    M. C. Tringides and M. G. Lagally, Surface Sci. 195:L159 (1988).CrossRefGoogle Scholar
  9. 9.
    Y. Gotoh and S. Ino, Thin Solid Films, 109:255 (1983).ADSCrossRefGoogle Scholar
  10. 10.
    D. E. Savage and M. G. Lagally, Appl.Phys.Lett. 50:1719 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    M. G. Lagally, D. E. Savage, and M. C. Tringides, this volume, pg. 139.Google Scholar
  12. 12. a).
    H. Jagodzinski, Acta Cryst. 1:201, 208, 298, (1949);CrossRefGoogle Scholar
  13. 12. b).
    H. Jagodzinski, W. Moritz and D. Wolf, Surface Sci. 77:233, 249, 265, 283 (1978).ADSCrossRefGoogle Scholar
  14. 13. a).
    J. M. Pimbley and T.-M. Lu, J.Appl.Phys. 55:182 (1983);ADSCrossRefGoogle Scholar
  15. 13. b).
    J. M. Pimbley and T.-M. Lu, J.Vac.Sci.Technol., 42:457 (1984);ADSGoogle Scholar
  16. 13. c).
    J. M. Pimbley and T.-M. Lu, J.Appl.Phys. 57:1121 (1985).ADSCrossRefGoogle Scholar
  17. 14. a).
    C. S. Lent and P. I. Cohen, Surface Sci., 139:121 (1984);ADSCrossRefGoogle Scholar
  18. 14. b).
    P. R. Pukite, C. S. Lent, and P. Cohen, Surface Sci., 161:39 (1985).ADSCrossRefGoogle Scholar
  19. 15. a).
    D. Saloner and M. G. Lagally, J.Vac.Sci.Technol. A2:935 (1984).ADSGoogle Scholar
  20. 15. b).
    D. Saloner and M. G. Iagally, in: “The Structure of Surfaces,” M. A. Van Hove and S.Y. Tong, eds., Springer, pg. 366. New York, (1985).CrossRefGoogle Scholar
  21. 16.
    D. E. Savage and M. G. Lagally, J.Vac.Sci.Technol. B4:943 (1986).Google Scholar
  22. 17.
    D. E. Savage and M. G. Lagally, J.Vac.Sci.Technol. (in preparation).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • D. E. Savage
    • 1
  • M. G. Lagally
    • 1
  1. 1.University of Wisconsin-MadisonMadisonUSA

Personalised recommendations