LEED Investigations of Si MBE Onto Si(100)

  • M. Horn
  • U. Gotter
  • M. Henzler
Part of the NATO ASI Series book series (NSSB, volume 188)


Modern semiconductor technology requires increasingly smaller and thinner structures for new developments of higher density integrated circuits. Therefore the growth of very thin, fairly perfect epitaxial films onto the Si(100) surface is of special interest [1]. The demand of high purity requires deposition in uhv onto a well defined surface. Since the nucleation and growth of the first layers determines the subsequent growth, this phase of epitaxy as well as the final roughness after growth are of particular importance. In order to study the process in-situ during growth, diffraction techniques are well suited, since they have a large working distance and provide average information over a large area of the surface. Normally RHEED is used to investigate epitaxial layer growth during deposition [7,8]. Unfortunately RHEED intensities are drastically affected by dynamic effects probably due to the grazing incidence and the high number of diffracted beams. Therefore in the present study LEED has been used with a high resolution instrument [9,10,11].


Lattice Factor Layer Distribution Ideal Layer Kinematic Approximation Convolution Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Proceedings MBE IV, J. of Crys. Growth, 81 (1987).Google Scholar
  2. 2.
    M. Henzler, Festkörperprobleme XIX, Vieweg Braunschweig (1979).Google Scholar
  3. 3.
    M. Horn and M. Henzler, J. of Crys. Growth, 81:428 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    M. Horn, in preparation.Google Scholar
  5. 5.
    H. Busch and M. Henzler, Surface Sci., 167:534 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    K. D. Gronwald, Diploma thesis, Hannover (1978).Google Scholar
  7. 7.
    T. Sakamoto et al., J. of Crys. Growth, 81:59 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    T. Kawamura, T. Sakamoto and K. Ohta, Surface Sci., 171:L409 (1987).CrossRefGoogle Scholar
  9. 9.
    K. D. Gronwald and M. Henzler, Surface Sci., 117:180 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    K. D. Gronwald, PhD thesis, Hannover (1982).Google Scholar
  11. 11.
    U. Scheithauer, G. Meyer and M. Henzler, Surface Sci., 178:441 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    H. Kroemer, J. of Crys. Growth, 81:193 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    C. S. Lent and P. I. Cohen, Surface Sci., 139:121 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    T.-M. Lu, M. G. Lagally, Surface Sci., 99:695 (1980) and 120:47 (1982).ADSCrossRefGoogle Scholar
  15. 15.
    T. Sakamoto et al., Surface Sci., 174:651 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    R. Altsinger, H. Busch, M. Horn and M. Henzler, Surface Sci., submitted.Google Scholar
  17. 17.
    W. K. Burton, Phil. Trans Roy. Soc, London, A243:299 (1951).MathSciNetADSGoogle Scholar
  18. 18.
    M. Henzler, Appl. Surface Sci., 11/12:450 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • M. Horn
    • 1
  • U. Gotter
    • 1
  • M. Henzler
    • 1
  1. 1.Institut für FestkörperphysicUniversität HannoverHannover 1Germany

Personalised recommendations