Advertisement

RHEED Studies of Growing Ge and Si Surfaces

  • J. Aarts
  • P. K. Larsen
Part of the NATO ASI Series book series (NSSB, volume 188)

Abstract

The technique of reflection high energy electron diffraction (RHEED) has become a widely used in-situ analytical tool in conjunction with the growth of single-crystalline films by molecular beam epitaxy (MBE). It is applied to investigate the conditions of clean static surfaces, both prior to and after growth, and is useful in controlling the growth process, due to the occurrence of intensity oscillations of diffracted beams with a period corresponding to the deposition of either a single or a double atomic layer. The phenomenon was first observed in MBE growth of GaAs(001) [1] and it can be used in growth rate control and in studying growth mechanisms; again in the case of GaAs(001) it was demonstrated that growth essentially takes place in a layer-by-layer fashion (two-dimensional growth) but changes from a nucleation-on-terraces mode to a step-flow mode with increasing temperature[2]. In the latter case the RHEED signal remains constant during growth, resulting in an upper temperature limit for the intensity oscillations. The transition temperature depends on the surface diffusion, the terrace width (distance between steps) and the deposition rate.

Keywords

Surface Diffusion Reflection High Energy Electron Diffraction Molecular Beam Epitaxy Growth Intensity Oscillation Crystallographic Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. Neave, B. A. Joyce, P. J. Dobson, and N. Norton, Appl.Phys. A31:l (1983).Google Scholar
  2. 2.
    J. H. Neave, P. J. Dobson, B. A. Joyce, and J. Zhang, Appl.Phys.Lett. 47:100 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    T. Sakamoto, N. J. Kawai, T. Nakagawa, K. Ohto, and T. Kojima, Appl. Phys.Lett. 47:617 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    J. Aarts, W. M. Gerits, and P. K. Larsen, Appi.Phys.Lett. 48:931 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    J. Aarts and P. K. Larsen, Surf.Sci. 188:391 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    M. Ichikawa and T. Doi, Appl.Phys.Lett. 50:1141 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    M. Ichikawa and T. Doi, this volume, p. 343.Google Scholar
  8. 8.
    T. de Jong, F. W. Saris, Y. Tamminga, and J. Haisma, Appi.Phys.Lett. 44:445 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    B. Böiger and P. K. Larsen, Rev.Sci.Instrum. 57:1363 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    J. Aarts, A. J. Hoeven, and P. K. Larsen, Phys.Rev.B (accepted for publication).Google Scholar
  11. 11.
    P. K. Larsen, G. Meyer-Ehmsen, B. Böiger and A.-J Hoeven, J.Vac.Sci.Technol. A5:611 (1987); B. Böiger, P. K. Larsen, and G. Meyer-Ehmsen, this volume, p. 201.ADSGoogle Scholar
  12. 12.
    P. J. Dobson, B. A. Joyce, J. H. Neave, and J. Zhang, J.Cryst.Growth. 81:1 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    T. Sakamoto, T. Kawamura, and G. Hashigenshi, Appl.Phys.Lett. 48:1612 (1986);ADSCrossRefGoogle Scholar
  14. 13a.
    T. Sakamoto, T. Kawamura, S. Nago, G. Hashiguchi, K. Sakamoto, and K. Kumyoshi, J.Cryst.Growth. 81:59 (1987).ADSCrossRefGoogle Scholar
  15. 14.
    E. Kasper, Appl.Phys. A28:129 (1982).ADSGoogle Scholar
  16. 15.
    R. F. C. Farrow, J.Electrochem.Soc. 121:899 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. Aarts
    • 1
  • P. K. Larsen
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations