Advertisement

The Contribution of Atomic Steps to Reflection High Energy Electron Diffraction from Semiconductor Surfaces

  • P. R. Pukite
  • P. I. Cohen
  • S. Batra
Part of the NATO ASI Series book series (NSSB, volume 188)

Abstract

Reflection high energy electron diffraction (RHEED) is a powerful tool for the study of surface processes. Because of the glancing geometry of RHEED, the high energy electrons only interact strongly with the first few layers of material. The glancing angle makes it exceedingly sensitive to surface morphology. However, the strong scattering of the electrons by the atomic potentials causes strong dynamical (multiple) scattering events to occur. This makes the diffracted intensities difficult to interpret.

Keywords

Diffract Beam Step Edge Reflection High Energy Electron Diffraction Reflection High Energy Electron Diffraction Pattern Vicinal Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. K. Larsen, G. Meyer-Ehmsen, B. Bolger and A.-J. Hoeven, J. Vac.Sci. Technol., A5:611 (1987).ADSGoogle Scholar
  2. 2.
    J. Zhang, J. H. Neave, P. J. Dobson and B. A. Joyce, Appl. Phys., A42:317 (1987).ADSGoogle Scholar
  3. 3.
    P. R. Pukite, J. M. Van Hove and P. I. Cohen, J. Vac. Sci. Technol., B2:243 and Appl. Phys. Lett., 44:456 (1984).Google Scholar
  4. 4.
    J. H. Neave, B. A. Joyce, P. J. Dobson and N. Norton, Appl. Phys., A31:l (1983).Google Scholar
  5. 5.
    Y. Tanishiro, T. Takayanagi and K. Yagi, Ultramieroscopy, 11:95 (1983).CrossRefGoogle Scholar
  6. 6.
    G. Somorjai, “Chemistry in Two Dimensions: Surfaces”, Cornell University, Ithaca, NY (1981).Google Scholar
  7. 7.
    P. R. Pukite and P. I. Cohen, J. Cryst. Growth, 50:1739 (1987).Google Scholar
  8. 8.
    P. R. Pukite and P. I. Cohen, Appl. Phys. Lett., 81:214 (1987).Google Scholar
  9. 9.
    J. M. Van Hove, C. S. Lent, P. R. Pukite and P. I. Cohen, J. Vac.Sci. Technol., B1:741 (1983).Google Scholar
  10. 10.
    J. M. Cowley and H. Shuman, Surface Sci., 38:53 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    C. S. Lent and P. I. Cohen, Surface Sci., 139:121 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    M. Henzler, in: “Electron Spectroscopy for Surface Analysis (Topics in Current Physics, Vol 4)”, H. Ibach, ed., Springer, Berlin (1979).Google Scholar
  13. 13.
    M. G. Lagally, in: “Methods of Experimental Physics: Surfaces”, R. L. Park and M. G. Lagally, eds., Academic, Orlando, FL (1985).Google Scholar
  14. 14.
    J. M. Cowley, “Diffraction Physics”, North-Holland, Amsterdam (1981).Google Scholar
  15. 15.
    P. I. Cohen, P. R. Pukite, J. M. Van Hove and C. S. Lent, J. Vac.Sci. Technol., A4:1251 (1986).ADSGoogle Scholar
  16. 16.
    P. R. Pukite, C. S. Lent and P. I. Cohen, Surface Sci., 161:39 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    F. Hottier, J. B. Theeten, A. Masson and J. L. Domange, Surface Sci., 65:563 (1977).ADSCrossRefGoogle Scholar
  18. 18.
    T. Hsu, Ultramicroscopy, 11:167 (1983).CrossRefGoogle Scholar
  19. 19.
    D. Saloner, J. A. Martin, M. C. Tringides, D. E. Savage, C. E. Aumann and M. G. Lagally, J. Appl. Phys., 61:2884 (1987).ADSCrossRefGoogle Scholar
  20. 20.
    P. R. Pukite, S. Batra and P. I. Cohen, Proceedings SPIE., 796 (1987).Google Scholar
  21. 21.
    M. Henzler and P. Marienhoff, J. Vac. Sci. Technol., B2:346 (1984).Google Scholar
  22. 22.
    C. S. Lent and P. I. Cohen, Phys. Rev., B33:8329 (1986).ADSGoogle Scholar
  23. 23.
    J. F. Menadue, Acta Cryst., A28:l (1972).Google Scholar
  24. 24.
    J. J. Harris and B. A. Joyce, Surface Sci., 103:L90 (1981).ADSCrossRefGoogle Scholar
  25. 25.
    N. Yamamoto and J. H. C. Spence, Thin Solid Films, 104:43 (1983).ADSCrossRefGoogle Scholar
  26. 26.
    P. I. Cohen, P. R. Pukite and S. Batra, in: “NATO Proceedings on Thin Film Growth”, B. Joyce and J. Venables, eds., Plenum, NY (1987).Google Scholar
  27. 27.
    R. K. Tsui, J. A. Curless, G. D. Kramer, M. S. Peffley and D. L. Rode, J. Appl. Phys., 58:2570 (1985).ADSCrossRefGoogle Scholar
  28. 28.
    D. Saluja, P. R. Pukite, S. Batra and P. I. Cohen, J. Vac. Sci.Technol., in press (1987).Google Scholar
  29. 29.
    G. Gilmer and P. Bennema, in: “Crystal Growth”, P. Hartman, ed., North-Holland, Amsterdam (1973).Google Scholar
  30. 30.
    T. Sakamoto, N. J. Kawai, T. Nakagawa, K. Ohta and T. Kojima, Appl. Phys. Lett., 47:617 (1985).ADSCrossRefGoogle Scholar
  31. 31.
    R. Kaplan, Surface Sci., 93:145 (1980).ADSCrossRefGoogle Scholar
  32. 32.
    J. M. Van Hove and P. I. Cohen, J. Crystal Growth, 50 (1987).Google Scholar
  33. 33.
    M. Henzler, Appl. Phys., A34:205 (1984).ADSGoogle Scholar
  34. 34.
    A. Y. Cho, J. Vac. Sci. Technol., 8:S31 (1971).ADSGoogle Scholar
  35. 35.
    T.-M. Lu and M. G. Lagally, Surface Sci., 120:47 (1982).ADSCrossRefGoogle Scholar
  36. 36.
    W. Moritz, these proceedings, p. 175.Google Scholar
  37. 37.
    M. G. Lagally, D. E. Savage and M. C. Tringides, these proceedings, p. 139.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • P. R. Pukite
    • 1
  • P. I. Cohen
    • 1
  • S. Batra
    • 1
  1. 1.Department of Electrical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations