Scanning RHEED Studies of Silicide Formation in a UHV-SEM

  • P. A. Bennett
  • A. P. Johnson
Part of the NATO ASI Series book series (NSSB, volume 188)


A variety of techniques for studying surfaces have been developed or adapted to UHV recently, including TEM, REM, SEM and STM. The scanning or probe forming techniques offer a great advantage in flexibility over parallel imaging techniques since many different signals may be used to form the image. A familiar example is Auger electron yield, used in scanning Auger microprobe instruments. RHEED provides a particularly strong and surface sensitive signal, yet it is seldom used or exploited in UHV microprobe instruments, primarily due to the conflicting requirements of a well colli-mated beam and a small spot size. Use of a field emission gun (FEG) with its superior brightness makes possible a combined scanning diffraction and microanalysis instrument[1]. We describe here such a custom built UHV-SEM-FEG+diffraction instrument and discuss is application to a study of epitaxial growth of nickel overlayers on silicon.


Dark Field Image Spot Intensity Coverage Dependence RHEED Pattern Small Spot Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ichikawa, T. Doi, M. Ichihashi, and K. Hayakawa, Japan.Jour.App1.Phys. 23:913 (1984).CrossRefGoogle Scholar
  2. 2.
    D. Tuggle, L. Swanson, and J. Orloff, Jour.Vac.Sci.Tech. 16:1699 (1980).CrossRefGoogle Scholar
  3. 3.
    J. Orloff, Scanning Electron Microscopy-I, 39 (1979).Google Scholar
  4. 4.
    D. Cherns, G. R. Anstis, J. L. Hutchinson, and J.C. H. Spence, Phil.Mag. A46:849 (1982).ADSGoogle Scholar
  5. 5.
    E. J. van Loenen, J. W. M. Frenken, J. F. van der Veen, and S. Valeri, Phys.Rev.Lett., 54:827 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    R. T. Tung, J. M. Gibson, and J. M. Poate, Phys.Rev.Lett. 50:429 (1983).ADSCrossRefGoogle Scholar
  7. 7.
    M. Liehr, P. E. Schmid, F. K. LeGoues and P. S. Ho, Phys.Rev.Lett. 54:2139 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    E. J. van Loenen, J. F. van der Veen, and F. K. LeGoues, Surf.Sci. 157:1 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    I. Abbati, L. Braicovich, B. de Michelis, U. del Pennino, and S. Valeri, Sol.State Corom. 43:199 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    P. J. Grunthaner, F. J. Grunthaner, and J. W. Mayer, Jour.Vac.Sci. Tech., 17:924 (1980).ADSCrossRefGoogle Scholar
  11. 11.
    J. L. Freeouf, Jour.Vac.Sci.Tech. 18:910 (1981).ADSCrossRefGoogle Scholar
  12. 12.
    F. Comin, J. E. Rowe, and P. H. Citrin, Phys.Rev.Lett. 51:2402 (1983).ADSCrossRefGoogle Scholar
  13. 13.
    W. S. Yang, F. Jona, and P. M. Marcus, Phys.Rev. B28:7377 (1983).ADSGoogle Scholar
  14. 14.
    B. N. Halawith, Master’s Thesis, Arizona State University, unpublished (1986).Google Scholar
  15. 15.
    P. A. Bennett, B. N. Halawith, and A. P. Johnson, Jour.Vac.Sci.Tech. A5:2121 (1987).ADSCrossRefGoogle Scholar
  16. 16.
    Structure Reports (compound, vol., page) = Ni3Si(15, 108), Ni2Si-theta (16, 123), Ni2Si-delta(16, 123), NiSi(35a, 86), NiSi2(13, 90).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • P. A. Bennett
    • 1
  • A. P. Johnson
    • 1
  1. 1.Arizona State UniversityTempeUSA

Personalised recommendations