Convergent Beam RHEED Calculations using the Surface Parallel Multislice Approach

  • Andrew E. Smith
Part of the NATO ASI Series book series (NSSB, volume 188)


As discussed elsewhere in this volume, reflection high energy electron diffraction (RHEED) has proved a most useful tool in the monitoring of surface structure. Various experimental methods have concentrated on extending RHEED to improve the information content of the diffraction pattern. One such technique has been termed Convergent Beam RHEED (CBRHEED) as it is analogous to the convergent beam (CB) technique used in Transmission Electron Diffraction and Microscopy (for example, Goodman [1], Steeds [2]). CBRHEED effects have been investigated in both specially built diffraction cameras [3,4] and in modern commercial microscopes [5,6]. It is the object of the present paper to report dynamically calculated CBRHEED patterns obtained by a surface parallel multislice method similar to that of Maksym and Beeby [7]. These patterns then allow direct comparison with experimental measurements on magnesium oxide and molybdenum disulfide reported by Shannon et al. [5].


Molybdenum Disulfide Solid State Phys Reflection High Energy Electron Diffraction Convergent Beam Electron Diffraction Absorption Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Goodman, Acta Cryst., A28:92 (1972).Google Scholar
  2. 2.
    J. W. Steeds, Convergent Beam Electron Diffraction, in: “Introduction to Analytical Electron Microscopy”, J. J. Hren, J. I. Goldstein and D. C. Joy, eds., Plenum, New York (1979).Google Scholar
  3. 3.
    A. Ichimiya, K. Kambe and G. Lehmpfuhl, J. Phys. Soc. Japan., 49:684 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    G. Lehmpfuhl and W. C. T. Dowell, Acta Cryst., A42:569 (1986).Google Scholar
  5. 5.
    M. D. Shannon, J. A. Eades, M. E. Meichle and P. S. Turner, Ultramicroscopy, 16:175 (1985).CrossRefGoogle Scholar
  6. 6.
    L. M. Peng and J. M. Cowley, J. Electron Microscopy Tech., 6:43 (1987).CrossRefGoogle Scholar
  7. 7.
    P. A. Maksym and J. L. Beeby, Surface Sci., 110:423 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    M. D. Shannon, J. A. Eades, M. E. Meichle, P. S. Turner and B. F. Buxton, Phys. Rev. Lett., 53:2125 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    A. E. Smith and D. F. Lynch, J. Vacuum Sci. Technol., A5:1262 (1987).ADSGoogle Scholar
  10. 10.
    J. M. Cowley, “Diffraction Physics”, 2nd ed., North Holland, Amsterdam (1981).Google Scholar
  11. 11.
    A. R. Moon, Z. Naturforsch Teil A., 27:390 (1972).ADSGoogle Scholar
  12. 12.
    R. Colella, Acta Cryst., A28:ll (1972).Google Scholar
  13. 13.
    R. Colella and J. F. Menadue, Acta Cryst., A28:16 (1972).Google Scholar
  14. 14.
    A. Ichimiya, Japan. J. Appl. Phys., 22:176 (1983).ADSCrossRefGoogle Scholar
  15. 15.
    A. Ichimiya, Japan. J. Appl. Phys., 24:1365 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    J. M. Cowley and A. F. Moodie, Acta Cryst., 10:609 (1957).MathSciNetCrossRefGoogle Scholar
  17. 17.
    D. F. Lynch and A. F. Moodie, Surface Sci., 32:422 (1972).ADSCrossRefGoogle Scholar
  18. 18.
    D. F. Lynch and A. E. Smith, Phys. Stat. Sol., B119:355 (1983).ADSGoogle Scholar
  19. 19.
    P. Goodman and G. Lehmpfuhl, Acta Cryst., 22:14 (1967).CrossRefGoogle Scholar
  20. 20.
    G. Radi, Acta Cryst., A26:41 (1970).Google Scholar
  21. 21.
    M. Tournarie, J. Phys. Soc. Japan., 17, Suppl. BII:98 (1962).Google Scholar
  22. 22.
    R. W. G. Wyckoff, “Crystal Structures”, Interscience, New York (1963).Google Scholar
  23. 23.
    P. A. Doyle and P. S. Turner, Acta Cryst., A24:390 (1968).Google Scholar
  24. 24.
    R. Mrstik, S. Y. Tong, R. Kaplan and A. K. Ganguly, Solid State Commun., 17:755 (1975).ADSCrossRefGoogle Scholar
  25. 25.
    R. Mrstik, R. Kaplan, T. L. Reinecke, M. van Hove and S. Y. Tong, Phys. Rev., B15:897 (1977).ADSGoogle Scholar
  26. 26.
    C. G. Kinniburgh, J. Phys. C. (Solid State Phys.), 8:2382 (1975).ADSCrossRefGoogle Scholar
  27. 27.
    C. G. Kinniburgh, J. Phys. C (Solid State Phys.), 9:2695 (1976).ADSCrossRefGoogle Scholar
  28. 28.
    M. R. Welton-Cook and W. Berndt, J. Phys. C (Solid State Phys.), 15:5691 (1982).ADSCrossRefGoogle Scholar
  29. 29.
    P. A. Maksym, Surface Sci., 149:157 (1985).ADSCrossRefGoogle Scholar
  30. 30.
    A. Ichimiya and Y. Takeuchi, Surface Sci., 128:343 (1983).ADSCrossRefGoogle Scholar
  31. 31.
    P. S. Turner and J. M. Cowley, Ultramicroscopy, 6:125 (1981).Google Scholar
  32. 32.
    J. M. Cowley, P. Goodman and A. L. G. Rees, Acta Cryst., 10:19 (1957).CrossRefGoogle Scholar
  33. 33.
    T. Kawamura and P. A. Maksym, Surface Sci., 161:12 (1985).ADSCrossRefGoogle Scholar
  34. 34.
    L. M. Peng and J. M. Cowley, Acta Cryst., A42:545 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Andrew E. Smith
    • 1
  1. 1.Department of PhysicsMonash UniversityClaytonAustralia

Personalised recommendations