Temperature Dependence of the Surface Disorder on Ge(001) Due to Ar+ Ion Bombardment

  • A. J. Hoeven
  • J. S. C. Kools
  • J. Aarts
  • P. C. Zalm
Part of the NATO ASI Series book series (NSSB, volume 188)


Sputtering, i.e. ion-bombardment-induced erosion of solid surfaces, has been investigated for over a century. It is both of fundamental importance for the understanding of the interaction of swift particles with matter, as well as from a practical point of view. For example, in many UHV research set-ups a noble-gas ion sputter facility is an indispensable tool for surface cleaning. For this particular application there are two notable drawbacks, viz. recoil implantation or ion beam mixing of surface impurities into the topmost atomic layers of the target and creation of radiation damage. The former can be eliminated by prolonged bombardment, the latter which is foremost important with crystalline targets will be the subject of the present paper.


Auger Electron Spectroscopy Target Temperature Reflection High Energy Electron Diffraction Reflection High Energy Electron Diffraction Pattern Intermediate Temperature Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Laegreid and G. K. Wehner, J.Appl.Phys. 32:365 (1961).ADSCrossRefGoogle Scholar
  2. 2.
    S. Southern, W. R. Willis and M. T. Robinson, J.Appl.Phys. 34:153 (1963).ADSCrossRefGoogle Scholar
  3. 3.
    H. Sommerfeldt, E. S. Mashkova and V. A. Molchanov, Phys.Lett. 38A:237 (1972).ADSGoogle Scholar
  4. 4.
    D. Ghose, D. Basu and S. B. Karmophapatro, Phys.Stat.Sol, (a) 77:121 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    G. S. Anderson, J.Appl.Phys. 38:1607 (1967).ADSCrossRefGoogle Scholar
  6. 6.
    R. J. MacDonald, Phil.Mag. 21:519 (1970).ADSCrossRefGoogle Scholar
  7. 7.
    J. Nizam and N. Benazeth-Colombie, Rev.Phys.Appl. 10:183 (1975).CrossRefGoogle Scholar
  8. 8.
    D. E. Aspnes and A. A. Studna, Surf.Sci. 96:294 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    J. P. Biersack and J. F. Ziegler, in: “Ion Implantation Techniques,” H. Ryssel and H. Glawischnig, eds., Springer, Berlin, p.157 (1982).Google Scholar
  10. 10.
    H. E. Roosendaal, in: “Sputtering by Particle Bombardment I,” R. Behrisch, ed., Springer, Berlin, p. 219 (1981).CrossRefGoogle Scholar
  11. 11.
    G. E. Thomas, J. L. Beckers, J. J. Vrakking and B. R. de Koning, J.Cryst.Growth 56:557 (1982).ADSCrossRefGoogle Scholar
  12. 12.
    C. C. Griffioen, J. H. Evans, P. C. de Jong and A. van Veen, Nucl.Instr.Meth. B27:417 (1987).ADSGoogle Scholar
  13. 13.
    M. T. Robinson and I. M. Torrens, Phys.Rev. B9:5008 (1974).ADSGoogle Scholar
  14. 14.
    J. P. Biersack, Nucl.Instr.Meth. B19/20:32 (1987).Google Scholar
  15. 15.
    P. K. Larsen, G. Meyer-Emsen, B. Böiger and A. J. Hoeven, J.Vac.Sci. Technol. A5:611 (1987).ADSGoogle Scholar
  16. 16.
    J. Aarts, W. Gerits and P. K. Larsen, Appl.Phys.Lett. 48:931 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    B. Poelsema, L. K. Verhey and G. Comsa, Phys.Rev.lett. 53:2500 (1984).ADSCrossRefGoogle Scholar
  18. 18.
    P. C. Zalm, Surf.Interf.Anal. 11:1 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • A. J. Hoeven
    • 1
  • J. S. C. Kools
    • 1
  • J. Aarts
    • 1
  • P. C. Zalm
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations