Diffraction from Stepped Surfaces

  • M. Henzler
Part of the NATO ASI Series book series (NSSB, volume 188)


Stepped surfaces are very important for many surface properties. For the most ideal surface it is desirable to have a step-free surface, which has to be varified experimentally or a density of steps has to be indicated. On the other hand the presence and distribution of atomic steps is essential for many changes at surfaces. Both during etching or reaction at surfaces (like oxidation of silicon) and during crystal growth a stepped surface is necessarily an intermediate state, so that the study of stepped surfaces is needed for a description of any growth or dissolution process. Only with this information other properties like electron mobility due to roughness scattering at surfaces or heterogeneous catalysis due to active sites at steps may be studied in detail.


Form Factor Surface Atom Step Surface Asperity Height Kinematic Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Yagi, this volume p. 285, K. Yagi, J.Vac.Sci.Techn. B in press (1987).Google Scholar
  2. 2.
    J. M. Cowley, this volume p. 261, Y. Uchida, this volume p. 303.Google Scholar
  3. 3.
    W. Telieps, E. Bauer, Surf.Sci. 162:163 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    G. Binnig, H. Rohrer, Surf.Sci., 162:236 (1983), 152,153:17 (1985).Google Scholar
  5. 5.
    M. G. Lagally, Appl.Surf.Sci., 13:260 (1982), and this volume p. 139.CrossRefGoogle Scholar
  6. 6.
    W. Moritz, this volume p. 175.Google Scholar
  7. 7.
    M. Henzler, Appl.Surf.Sci. 11, 12:450 (1982).Google Scholar
  8. 8.
    B. A. Joyce et al, this volume p. 397, S. Ino, this volume p. 3, P. R. Pukite et al, this volume p. 427.Google Scholar
  9. 9.
    K. H. Rieder in: “Springer Series in Surface Sciences 3,” F. Nizzoli, K. H. Rieder, R. F. Willis, eds, p.2 (1985). J. P. Toennies, J.V. S.T.B. in press (1987).Google Scholar
  10. 10.
    M. G.. Lagally, J. A. Martin, Rev.Sci.Instr. 54 (1983).Google Scholar
  11. 11.
    M. Henzler, Surf.Sci., 152, 153:963 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    S. Y. Tong et al, this volume p. 63, M. A. van Hove, S. Y. Tong, Surface crystallography, by LEED, Springer Series in: “Chemical Physics,” Vol. 2 (1979).Google Scholar
  13. 13.
    H. Jagodzinski, W. Moritz, D. Wolf, Surf.Sci. 77:233, 249, 265, 283 (1978).ADSCrossRefGoogle Scholar
  14. 14.
    M. Henzler in: “The Structure of Surfaces,” M. A. van Hove, S. Y. Tong, eds., Springer (1985).Google Scholar
  15. 15.
    M. Horn, M. Henzler, J.Cryst.Growth 81:428 (1987).ADSCrossRefGoogle Scholar
  16. 16.
    K. D. Gronwald, M. Henzler, Surf.Sci. 117:180 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    U. Scheithauer, G. Meyer, M. Henzler, Surf.Sci. 178:441 (1986).ADSCrossRefGoogle Scholar
  18. 18.
    H. Busch, M. Henzler, Surf.Sci. 167:534 (1986).ADSCrossRefGoogle Scholar
  19. 19.
    R. Altsinger, H. Busch, M. Horn, M. Henzler, Surf.Sci, (submitted)Google Scholar
  20. 20.
    J. Wollschläger, priv. coram.Google Scholar
  21. 21.
    T. Ando, A. B. Fowler, F. Stern Rev.Mod.Phys. 54:437 (1982).ADSCrossRefGoogle Scholar
  22. 22.
    P. O. Hahn, M. Henzler, J.Appl.Phys. 54:6492 (1983)ADSCrossRefGoogle Scholar
  23. 22a.
    P. O. Hahn, M. Henzler, J. V. S. T. A2 574 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • M. Henzler
    • 1
  1. 1.Institut F. FestkörperphysikUniversität HannoverHannover 1Germany

Personalised recommendations