Advertisement

Theory of Electron Scattering from Defect: Steps on Surfaces with Non-Equivalent Terraces

  • W. Moritz
Part of the NATO ASI Series book series (NSSB, volume 188)

Abstract

One important parameter for the characterization of surfaces is the surface roughness. The density and distribution of steps influences most of the physical and chemical properties of surfaces. It is found, for example, that a number of catalytic reactions at surfaces actually take place at edge or kink sites. In the production of semiconductor devices the flatness of surfaces or interfaces plays an essential role. Therefore a number of techniques have been developed to investigate the topography of surfaces either by direct imaging or by diffraction using both, X-rays and electrons. The diffraction method is the most convenient method to obtain information about the surface roughness on an atomic scale.

Keywords

Central Peak Diffuse Intensity Reciprocal Space Beam Profile Reflection High Energy Electron Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Henzler, Surface Sci., 22:12 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    M. Henzler, Electron diffraction and surface defect structure, in: “Electron Spectroscopy for Surface Analysis”, H. Ibach, ed., Springer Verlag, Berlin-Heidelberg-New York (1977).Google Scholar
  3. 3.
    H. Jagodzinski, W. Moritz and D. Wolf, Surface Sci., 77:233 (1978).ADSCrossRefGoogle Scholar
  4. 3a.
    W. Moritz, H. Jagodzinski and D. Wolf, Surface Sci., 77:249 (1979).CrossRefGoogle Scholar
  5. 3b.
    D. Wolf, H. Jagodzinski and W. Moritz, Surface Sci., 77:265 (1979).CrossRefGoogle Scholar
  6. 3c.
    D. Wolf, H. Jagodzinski and W. Moritz, Surface Sci., 77:283 (1979).CrossRefGoogle Scholar
  7. 4.
    T. M. Lu and M. G. Lagally, Surface Sci., 120:47 (1982).ADSCrossRefGoogle Scholar
  8. 5.
    T. M. Lu, G.-C. Wang and M. G. Lagally, Surface Sci., 108:494 (1981).CrossRefGoogle Scholar
  9. 6.
    J. M. Pimbley and T. M. Lu, J. Appl. Phys., 55:182 (1984).ADSCrossRefGoogle Scholar
  10. J. M. Pimbley and T. M. Lu, J. Appl. Phys., 57:1121 (1985).ADSCrossRefGoogle Scholar
  11. J. M. Pimbley and T. M. Lu, J. Appl. Phys., 58:2184 (1985).ADSCrossRefGoogle Scholar
  12. 7.
    C. S. Lent and P. I. Cohen, Surface Sci., 139:121 (1984).ADSCrossRefGoogle Scholar
  13. 8.
    P. R. Pukite, C. S. Lent and P. I. Cohen, Surface Sci., 161:39 (1985).ADSCrossRefGoogle Scholar
  14. 9.
    M. G. Lagally, D. E. Savage and M. C. Tringides, this volume, p. 139.Google Scholar
  15. 10.
    J. Zhang, J. H. Neave, P. J. Dobson and B. A. Joyce, Appl. Phys., A42:317–326 (1987).ADSGoogle Scholar
  16. 11.
    T. Sakamoto, N. J. Kawai, N. J. Kagakawa, K. Ohta and T. Kojima, Appl. Phys. Lett., 47:617–619 (1985).ADSCrossRefGoogle Scholar
  17. T. Sakamoto, T. Kawamura and G. Hashiguchi, Appl. Phys. Lett., 48 (1986).Google Scholar
  18. 12.
    J. Aarts, W. M. Gerits and P. K. Larsen, Appl. Phys. Lett., 48:931 (1986).ADSCrossRefGoogle Scholar
  19. 13.
    B. A. Joyce, J. H. Neave, J. Zhang and P. J. Dobson, this volume, p. 397.Google Scholar
  20. 14.
    J. M. Cowley, “Diffraction Physics”, Elsevier Science Publ., Amsterdam-New York (1981).Google Scholar
  21. 15.
    W. Moritz, Inst. Phys. Conf. Ser., 41:261 (1978).Google Scholar
  22. 16.
    M. Henzler, this volume, p. 193.Google Scholar
  23. 17.
    J. A. Martin, C. E. Aumann, D. E. Savage, M. C. Tringides, M. G. Lagally, W. Moritz and F. Kretschmar, J. Vac. Sci. Technol. (1986).Google Scholar
  24. 18.
    M. Horn, U. Gotter and M. Henzler, this volume, p. 463.Google Scholar
  25. 19.
    T. Kawamura, T. Sakamoto and K. Ohto, Surface Sci., 171:L409–L414 (1986).CrossRefGoogle Scholar
  26. 20.
    D. Saloner, J. A. Martin, M. C. Tringides, D. E. Savage, C. A. Aumann and M. G. Lagally, J. Appl. Phys., 61:2884 (1987).ADSCrossRefGoogle Scholar
  27. 21.
    H. Saalfeld, S. Tougaard, K. Bolwin and M. Neumann, Surface Sci. (1986).Google Scholar
  28. 22.
    T. Sakamoto, N. J. Nagakawa, K. Ohta and T. Kojima, Appl. Phys. Lett., 47:617–619 (1985).ADSCrossRefGoogle Scholar
  29. 23.
    S. B. Hendricks and E. Teller, J. Chem. Phys., 10:147 (1942).ADSCrossRefGoogle Scholar
  30. 24.
    H. Jagodzinski, Acta Cryst., 2:201, 208 and 298 (1949).CrossRefGoogle Scholar
  31. 25.
    J. Kakinoki and Y. Kamura, J. Phys. Soc. Japan, 9:169, 176 (1954).ADSCrossRefGoogle Scholar
  32. 26.
    M. Henzler and J. Clabes, Proc. 2nd Intern. Conf. on Solid Surfaces 1974, Japan. J. Appl. Phys., Suppl. 2, Pt. 2:389–396 (1974).Google Scholar
  33. 27.
    R. Kaplan, Surface Sci., 93:145–158 (1980).ADSCrossRefGoogle Scholar
  34. 28.
    N. Inoue, Y. Tanishiro and K. Yagi, Japan. J. Appl. Phys., 26:L293 (1987).ADSCrossRefGoogle Scholar
  35. 29.
    T. Nakayama, Y. Tanishiro and K. Takanayagi, Japan. J. Appl. Phys., 26:L280 (1987).ADSCrossRefGoogle Scholar
  36. 30.
    D. E. Aspnes and J. Ihm, Phys. Rev. Lett., 57:3054–3057 (1986).ADSCrossRefGoogle Scholar
  37. 31.
    H. Jagodzinski, Prog. Crystal Growth and Charact., 14:47–102 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • W. Moritz
    • 1
  1. 1.Institut f. KristallographieMineralogie Universitaet MuenchenMuenchen 2Germany

Personalised recommendations