Diffraction from Disordered Surfaces: An Overview

  • M. G. Lagally
  • D. E. Savage
  • M. C. Tringides
Part of the NATO ASI Series book series (NSSB, volume 188)

Abstract

Reflection high-energy electron diffraction (RHEED) is just one of several diffraction techniques (electron, atom, or x-ray) that have the capability for investigating the crystallography and microstructure of surfaces and very thin films. Diffraction gives a statistical view of disorder rather than a local picture, as would be obtained, for example, in a scanning tunneling microscope. Many processes occurring at surfaces, such as growth, phase transformations, the formation of steps, and so on, involve deviations from perfect order that are stochastic in nature. For such processes a statistical view is appropriate and is directly relatable in a quantitative way to the mechanisms that are involved. All such phenomena can be broadly classified under surface disorder. This paper attempts to review how diffraction, and in particular RHEED, can be used to investigate surface disorder. The intent here is to provide a simple, physically reasonable, pedagogical approach to this subject.[1] We somewhat artificially divide the paper into static phenomena (Sec. II), time-dependent phenomena (Sec. III), and (Sec. IV) issues that complicate the simple picture presented in Secs. II and III. In this section we treat preliminary topics.

Keywords

Migration Attenuation Propa GaAs Autocorrelation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A review of fundamentals of diffraction from surfaces is given in Ch. 5 of “Methods of Experimental Physics, Vol. 22: Surfaces,” R.L. Park and M.G. Lagally, eds., Academic, Orlando, FL (1985). A chronological listing of essential papers and major reviews on techniques, instrumentation, and studies of various aspects of surface crystallography, including surface disorder, is provided there.Google Scholar
  2. 2.
    R. L. Park, J. E. Houston, and D. G. Schreiner, Rev.Sci.Instrum. 42:60 (1971).ADSCrossRefGoogle Scholar
  3. 3.
    T. M. Lu and M. G. Lagally, Surface Sci. 99:695 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    J. A. Martin and M. G. Lagally, in: “Scanning Electron Microscopy 1985,” O. Johari, ed., SEM, Inc., Chicago, (1985). pg. 1357Google Scholar
  5. 4a.
    M. G. Lagally and J. A. Martin, Rev.Sci.Instrum. 54:1273 (1983).ADSCrossRefGoogle Scholar
  6. 5.
    H. Marten, this volume, pg. 109.Google Scholar
  7. 6.
    The paper by W. Moritz in these proceedings (pg. 175) deals with one aspect of multiple scattering in profile analysis. See also J. A. Martin, C. E. Aumann, D. E. Savage, M. C. Tringides, M. G. Lagally, W. Moritz, and F. Kretschmar, J.Vac.Sci.Technol. A5:615 (1987).ADSGoogle Scholar
  8. 7.
    M. G. Lagally, in: “Chemistry and Physics of Solid Surfaces, IV,” R. Vanselow and R. Howe, eds., Springer, Heidelberg, (1982). p. 281Google Scholar
  9. 7a.
    D. G. Welkie and M. G. Lagally, Thin Solid Films 93:21 (1982).CrossRefGoogle Scholar
  10. 8.
    T.-M. Lu, L. -H. Zhao, M. G. Lagally, G. -C. Wang, and J. E. Houston, Surface Sci. 122:519 (1982).ADSCrossRefGoogle Scholar
  11. 9.
    For a recent review and a list of references on ordering kinetics in overlayers, see K. Binder, Ber.Bunsenges.Phys.Chem. 90:257 (1986).Google Scholar
  12. 10.
    D. Saloner and M. G. Lagally, Mat.Res.Soc.Symp.Proc. 41:179 (1985).CrossRefGoogle Scholar
  13. 11.
    The phase diagram is drawn for a (1×1) lattice, but the coverage scale can easily be modified to reflect an (mxn) lattice. The argument is the same for superlattice and fundamental reflections.Google Scholar
  14. 12.
    J. D. Gunton, M. San Miquel, and P. S. Sahni, in: “Phase Transitions and Critical Phenomena,” vol. 8, C. Domb and J. L. Lebowitz, eds., Academic, New York, pg. 267 (1983). See also ref. 9.Google Scholar
  15. 13.
    M. C. Tringides and M. G. Lagally, the volume; Surface Sci. 195:L159 (1988).CrossRefGoogle Scholar
  16. 14.
    M. Henzler, Appl.Surface Sci. 11/12:450 (1982). See also Ref. 6 and discussion in Ref. 21.Google Scholar
  17. 15. a)
    H. Jagodzinski, Acta Cryst. 1:201, 208, 298 (1949);CrossRefGoogle Scholar
  18. 15. b)
    H. Jagodzinski, W. Moritz, and D. Wolf, Surface Sci. 77: 233, 249, 265, 283 (1978).ADSCrossRefGoogle Scholar
  19. 16. a)
    J. M. Pimbley and T. -M. Lu, J.Appl.Phys. 55: 182 (1983);ADSCrossRefGoogle Scholar
  20. 16. b)
    J. M. Pimbley and T. -M. Lu, J.Vac.Sci.Technol. A2:457 (1984);ADSGoogle Scholar
  21. 16. c)
    J. M. Pimbley and T. -M. Lu J.Appl.Phys. 57:1121 (1985).ADSCrossRefGoogle Scholar
  22. 17. a)
    C. S. Lent and P. I. Cohen, Surface Sci. 139:121 (1984);ADSCrossRefGoogle Scholar
  23. 17.b)
    P. R. Pukite, C. S. Lent, and P. I. Cohen Surface Sci. 161:39 (1985).ADSCrossRefGoogle Scholar
  24. 18. a)
    D. Saloner and M. G. Lagally, J.Vac.Sci.Technol. A2:935 (1984);ADSGoogle Scholar
  25. 18.b)
    D. Saloner and M. G. Lagally, in: “The Structure of Surfaces,” M. A. Van Hove and S.Y. Tong, eds., Springer, New York, pg. 366, (1985).CrossRefGoogle Scholar
  26. 19.
    M. B. Webb and M. G. Lagally, Solid State Phys. 28:301 (1973).CrossRefGoogle Scholar
  27. 20.
    H. M. Clearfield, Ph.D. Dissertation, University of Wisconsin-Madison (unpublished) (1984).Google Scholar
  28. 21.
    D. Saloner, J. A. Martin, M. C. Tringides, D. E. Savage, C. E. Aumann, and M. G. Lagally, J.Appl.Phys. 61:2884 (1987).ADSCrossRefGoogle Scholar
  29. 22.
    E. H. Conrad, R. M. Aten, D. S. Kaufman, L. R. Allen, and T. Engel, J.Chem.Phys. 84:1015 (1986).ADSCrossRefGoogle Scholar
  30. 23. a)
    a) J. M. Cowley and L.-M. Peng, Ultramicroscopy 16:59 (1985);CrossRefGoogle Scholar
  31. 23. b)
    T. Hsu and L. M. Peng, Ultramicroscopy 22:64 (1987).CrossRefGoogle Scholar
  32. 24.
    P. R. Pukite, J. M. Van Hove, and P. I. Cohen, Appl.Phys.Lett. 44:456 (1984).ADSCrossRefGoogle Scholar
  33. 25.
    For an example where a multistep contribution is considered, see M. Horn, U. Gotter, and M. Henzler, this volume, pg. 463.Google Scholar
  34. 26.
    T.-M. Lu and M. G. Lagally, Surface Sci. 120:47 (1982).ADSCrossRefGoogle Scholar
  35. 27.
    R. Altsinger, H. Bush, M. Horn, and M. Henzler, Surface Sci, in press; M. Henzler, this volume, pg. 193.Google Scholar
  36. 28.
    E. J. Heller, D. E. Savage, and M. G. Lagally, J.Vac.Sci.Technol. A6:xxx (1988) (in press).Google Scholar
  37. 29.
    D. E. Savage and M. G. Lagally, J.Vac.Sci.Technol. B4:943 (1986).Google Scholar
  38. 30.
    D. E. Savage and M. G. Lagally, this volume, pg. 475.Google Scholar
  39. 31.
    M. C. Tringides, P. K. Wu, and M. G. Lagally, Phys.Rev.Letters 59:315 (1987).ADSCrossRefGoogle Scholar
  40. 32.
    J. R. Chen and R. Gomer, Surface Sci. 79:3490 (1979)CrossRefGoogle Scholar
  41. 32a.
    M. C. Tringides and R. Gomer, Surface Sci. 158:254 (1985).CrossRefGoogle Scholar
  42. 33.
    C. E. C. Wood, Surface Sci. 103:L90 (1981).Google Scholar
  43. 34.
    J. M. Van Hove, C. S. Lent, P. R. Pukite, and P. I. Cohen, J.Vac.Sci. Technol. B1:741 (1983).Google Scholar
  44. 35.
    M. Horn and M. Henzler, J.Crystal Growth 81:428 (1987).ADSCrossRefGoogle Scholar
  45. 36.
    M. Ichikawa and T. Doi, Appl.Phys.Letters 50:1141 (1987).ADSCrossRefGoogle Scholar
  46. 37.
    J. Villain, preprint.Google Scholar
  47. 38.
    M. G. Lagally, T.-M. Lu, and G.-C. Wang, in: “Ordering in Two Dimensions,” S. Sinha, ed., Elsevier, New York, p. 113. (1980).Google Scholar
  48. 39.
    The recent data shown in Ref. 27 support this picture.Google Scholar
  49. 40.
    J. Woodall, private communication.Google Scholar
  50. 41.
    Apparently the best optical quality GaAs films with the highest mobilities are obtained if grown such that there are no oscillations; P. J. Dobson, private communication.Google Scholar
  51. 42.
    R. Kariotis, C. E. Aumann, D. E. Savage, and M. G. Lagally, in preparation.Google Scholar
  52. 43.
    J. H. Teague, P. J. Dobson, B. A. Joyce, and J. Zhang, Appl.Phys. Letters 47:100 (1985).ADSCrossRefGoogle Scholar
  53. 44.
    P. I. Cohen, this volume, pg. 427.Google Scholar
  54. 45.
    B. A. Joyce, this volume, pg. 397.Google Scholar
  55. 46.
    B. Böiger and P. K. Larsen, this volume, pg. 201.Google Scholar
  56. 47.
    D. E. Aspnes and J. Ihm, Phys.Rev.Letters 57:3054 (1986).ADSCrossRefGoogle Scholar
  57. 48.
    J. T. McKinney, E. R. Jones, Jr., and M. B. Webb, Phys.Rev. 160:523 (1967).ADSCrossRefGoogle Scholar
  58. 49.
    M. G. Lagally and M. B. Webb, in: “The Structure and Chemistry of Solid Surfaces,” G. A. Somorjai, ed., Wiley, New York, Ch.20, (1969). See also Refs. 1 and 19.Google Scholar
  59. 50.
    J. M. Pimbley and T. -M. Lu, J.Appl.Phys. 57:4583 (1985).ADSCrossRefGoogle Scholar
  60. 51.
    D. Saloner, P. K. Wu, and M. G. Lagally, J.Vac.Sci.Technol. A3:1531 (1985).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • M. G. Lagally
    • 1
  • D. E. Savage
    • 1
  • M. C. Tringides
    • 1
  1. 1.University of Wisconsin-MadisonMadisonUSA

Personalised recommendations