Advertisement

Brain Imaging: Positron Emission Tomography and Cognitive Functioning

  • Randolph W. Parks
  • David A. Loewenstein
  • Jen Y. Chang
Part of the Human Neuropsychology book series (HN)

Abstract

The application of positron emission tomography (PET) to the study of the functioning human brain provides researchers with a noninvasive procedure which allows in-vivo quantification of physiological and biochemical processes underlying cognition (Gur, 1985; Gur, 1987; Reivich, Alavi, Gur, and Greenberg, 1985). Techniques from a diverse set of fields must be effectively integrated for the application of PET technology. Organic chemistry and biochemistry make possible the synthesis of trace levels of the biological and physiological substrates which are used to examine biochemical pathways in the brain without perturbing the normal physiology. Physics and engineering are essential for the development of the equipment needed to measure the concentration of the radionuclides in tissue. Mathematics and physiology are used for the development of models to describe the behavior of those radioactive tracer agents. Medicine and neuropsychology pose the clinically relevant questions that can be answered by this technology (Mazziotta & Phelps, 1985a; Phelps, Mazziotta, & Huang, 1982; Phelps, Mazziotta, Schelbert, Hawkins, & Engel, 1985; Sokoloff, 1985). The role of the neuropsychologist is crucial in the assessment of baseline cognitive functioning, the development of experimental design and quantification of behavioral stimulation during scanning, and the evaluation of the effects of the imaging process, itself. In this chapter, we will describe the basic principles of PET and review current findings of PET applications to the study of cognitive functioning. In addition, we present data on new behavioral activation paradigms which have recently been developed to further elucidate the relationships between cognitive/neuropsychological functioning and metabolic activity within specific cerebral regions.

Keywords

Positron Emission Tomography Cerebral Blood Flow Verbal Fluency Positron Emission Tomography Scanner Verbal Fluency Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alavi, A., Reivich, M., Greenberg, J. FL, Hand, P., Rosenquist, A., Rintelmann, W., Christman, D., Fowler, J., Goldman, A., MacGregor, R., and Wolf, A. (1981). Mapping of functional activity in brain with 18F-fluro-deoxyglucose. Seminars in Nuclear Medicine, 11, 24–31.PubMedCrossRefGoogle Scholar
  2. Benson, F. D. (1982). The use of positron emission tomography scanning techniques in the diagnosis of Alzheimer’s disease. In S. Corkin (Ed.), Alzheimer’s disease: A report of progress [Vol. 19] (pp. 79–82 ). New York: Raven Press.Google Scholar
  3. Berlin, C. J., and McNeill, M. (1956). Dichotic listening. In N. Nass (Ed.), Contemporary issues in experimental Phonetics. New York: Academic Press.Google Scholar
  4. Birren, J. E., Butler, R. N., and Greenhouse (1963). Interdisciplinary relationships: Interrelations of physiological, psychological and psychiatric findings in healthy elderly men. In J.E. Birren and R.N. Butler (Eds.), Human aging I. A biological and behavioral study (PHS Publication No. 986, 283–305 ). Washington, DC: U.S. Government Printing Office.Google Scholar
  5. Broadbent, D. (1956). Growing points in multichannel communication. Journal of the Acoustical Society of America, 28, 533–535.CrossRefGoogle Scholar
  6. Brooks, R. A., and Di Chiro, G. (1976) Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Physics in Medicine and Biology, 21, 689–732.PubMedCrossRefGoogle Scholar
  7. Chang, J.Y., Duara, R., Barker, W., et al. (1987). Two behavioral states studied in a single PET/FDG procedure: theory, method and preliminary results. Journal of Nuclear Medicine, 28, 852–860.PubMedGoogle Scholar
  8. Chase, T. N., Foster, N. L., Fedio, P., Di Chiro, G., Brooks, R., and Patronas, N. J. (1983). Alzheimer’s disease: Local cerebral metabolism studies using 18F-Fluorodeoxyglucose-positron emission tomography technique. In D. Samuel (Ed.), Aging of the brain (pp. 143–154 ). New York: Raven Press.Google Scholar
  9. Chase, T. N., Foster, N. L., Fedio, P., Brooks, R., Mansi, L., and Di Chiro, G. (1984a). Regional cortical dysfunction in Alzheimer’s disease as determined by positron emission tomography. Annals of Neurology, 15(Suppl.), 170–174.Google Scholar
  10. Chase, T. N., Fedio, P., Foster, N. L., Brooks, R., Di Chiro, G., and Mansi, L. (1984b). Wechsler Adult Intelligence Scale performance: Cortical localization by fluorodeoxyglucose F 18-positron emission tomography. Archives of Neurology, 41, 1244–1247.PubMedCrossRefGoogle Scholar
  11. Chase, T. N., Brooks, R. A., Di Chiro, G., Fedio, P., Foster, N. L., Kessler, R. A., Mansi, L., Manning, R. G., and Patronas, N. J. (1985). Focal cortical abnormalities in Alzheimer’s disease.In T. Greitz, D. H. Ingvar, and L. W. Widen (Eds.), The metabolism of the human brain studied with positron emission tomography (pp. 433–440 ). New York: Raven Press.Google Scholar
  12. Cullen, J. K., Berlin, C. I., Hughes, L. F., Thompson, C. L., and Samson, D. S. (1975). Proceedings of a Symposium on Central Auditory Processing Disorders (pp. 108–127 ). Omaha, Nebraska: University of Nebraska Press.Google Scholar
  13. Dimond, S., and Beaumont, G. (1973). Difference in the vigilance performance of the right or left hemispheres. Cortex, 9, 259–265.PubMedGoogle Scholar
  14. Dimond, S., and Farrington, L. Emotional response to films shown to the right or left hemi- spheres of the brain measured by heart rate. Acta Psychologica, 41, 255–260.Google Scholar
  15. Duara, R., Chang, J.Y., Barker, W.W., Yoshii, F., and Apicella, A. (1986). Correlation of regional cerebral metabolic activation to performance in activating tasks. Neurology, 36 (Supplement 1), 349.Google Scholar
  16. Duara, R., Grady, C., Haxby, J., Ingrav, D., Sokoloff, L., Margolin, R.A., Manning, R. G., Cutler, N. R., and Rapoport, S.I. (1984). Human brain glucose utilization and cognitive function in relation to age. Annals of Neurology, 16, 702–713.CrossRefGoogle Scholar
  17. Duara, R., Grady, C., Haxby, J., Sundaram, M., Cutler, N. R., Heston, L., Moore, A., Schlageter, N., Larson, S., and Rapoport, S. I. (1986). Positron emission tomography in Alzheimer’s disease. Neurology, 36, 879–887.PubMedCrossRefGoogle Scholar
  18. Duara, R., Gross-Glenn, K., Barker, W.W., Chang, J.Y., Apicella, A., Loewenstein, D. A., and Boothe, T. (1987). Behavioral activation and the variability of cerebral glucose metabolic measurements. Journal of Cerebral Blood Flow and Metabolism, 7, 266–271.PubMedCrossRefGoogle Scholar
  19. Duara, R., Sheremata, W.A., Parks, R.W., Barker, W.W., Chang, J.Y., Yoshii, F., and Apicella, A. (Unpublished manuscript). Regional cerebral glucose metabolism (rCMRglc) activation by the Word Fluency Test (WFT). Mount Sinai Medical Center.Google Scholar
  20. Farkas, T., Ferris, S. H., Wolf, A. P., De Leon, M. J., Christman, D. R., Reisberg, B., Abass, A., Fowler, J. S., George, A. E., and Reivich, M. (1982). 18F -2-Deoxy-2fluoro-D-glucose as a tracer in the positron emission tomographic study of senile dementia. American Journal of Psychiatry, 139, 352–353.Google Scholar
  21. Ferris, S. H., De Leon, M. J., Wolf, A. P., Farkas, T., Christman, D. R., Reisberg, B., Fowler, J. S., MacGregor, R., Goldman, A., George, A. E., and Rampal, S. (1980). Positron emission tomography in the study of aging and senile dementia. Neurobiology of Aging, 1, 127–131.CrossRefGoogle Scholar
  22. Foster, N. L., Chase, T. N., Fedio, P., Patronas, N. J., Brooks, R. A., and Di Chiro, G. (1983). Alzheimer’s disease: Focal cortical changes shown by positron emission tomography. Neurology, 33, 961–965.PubMedCrossRefGoogle Scholar
  23. Foster, N. L., Chase, T. N., Mansi, L., Brooks, R., Fedio, P., Patronas, N. J., and Di Chiro, G. (1984). Cortical abnormalities in Alzheimer’s disease. Annals of Neurology, 16, 649–654.PubMedCrossRefGoogle Scholar
  24. Foster, N. L., Chase, T. N., Patronas, N. J., Gillespie, M. M., and Fedio, P. (1986). Cerebral Mapping of apraxia in Alzheimer’s disease by positron emission tomography. Annals of Neurology, 19, 139–143.PubMedCrossRefGoogle Scholar
  25. Fox, P.T., Petersen, S.E., Posner, M.I., and Raichle, M.E. (1987). Language-related brain activation measured with PET: Comparison of auditory and visual word presentations. Journal of Cerebral Blood Flow and Metabolism, 7, (Supplement 1), S294.Google Scholar
  26. Friedland, R. P., Budinger, T. F., Ganz, E., Yano, Y., Mathis, C. A., Koss, B., Ober, B. A., Huesman, R. H., and Derenzo, S. E. (1983). Regional cerebral metabolic alterations in dementia of the Alzheimer type: Positron emission tomography with [18F] Fluorodeoxyglucose. Journal of Computer Assisted Tomography 7, 590–598.Google Scholar
  27. Ginsberg, M.D., Yoshii, F., Vibulsresth, S., Chang, J.Y., Duara, R., Barker, W.W., and Boothe, T.E. (1987). Human task-specific somatosensory activation in man. Neurology, 37, 1301–1308.PubMedCrossRefGoogle Scholar
  28. Grady, C. L. (1984) Neuropsychology and Cerebral Metabolism in Normal Aging. In N. R. Cutler (moderator), Brain imaging: Aging and Dementia. Annals of Internal Medicine, 101, 358–360.Google Scholar
  29. Greenberg, J. H., Reivich, M., Alavi, A., Hand, P., Rosenquist, A., Rintelmann, W., Stein, A., Tusa, R., Dann, R., Christman, D., Fowler, J., MacGregor, B., and Wolf, A. (1981) Metabolic mapping of functional activity in human subjects with the [18F]Fluorodeoxyglucose technique. Science, 212, 678–680.PubMedCrossRefGoogle Scholar
  30. Gross-Glenn, K., Duara, R., Yoshii, F., Barker, W.W., Chang, J.Y., Apicella, A., Boothe, T., and Lubs, H.A. (1986). PET scan studies during reading in dyslexic and non-dyslexic adults. Society of Neuroscience Abstracts, 12, 1364.Google Scholar
  31. Gur, R. C. (1985). Imaging regional brain physiology in behavioral neurology. In M-M. Mesulam (Ed.), Principles of behavioral neurology (pp. 347–362 ). Philadelphia: F. A. Davis.Google Scholar
  32. Gur, R. C. (1987). Imaging the activity of the human brain. National Forum, 67, 13–16.Google Scholar
  33. Gur, R. C., Gur, R. E., Rosen, A. D., Warach, S., Alavi, A., Greenberg, J., and Reivich, M. (1983). A cognitive-motor network demonstrated by positron emission tomography. Neuropsychologia, 21, 601–606.PubMedCrossRefGoogle Scholar
  34. Haxby, J. V. (1984). Neuropsychology and cerebral metabolism in dementia. In N. R. Cutler (moderator), Brain imaging: Aging and Dementia. Annals of Internal Medicine, 101, 362–364.Google Scholar
  35. Haxby, J. V., Duara, R., Grady, C. L., Cutler, N. R., and Rapoport, S. I. (1985). Relations between neuropsycholoical and cerebral metabolic asymmetries in early Alzheimer’s disease. Journal of Cerebral Blood Flow and Metabolism, 5, 193–200.PubMedCrossRefGoogle Scholar
  36. Haxby, J. V., Grady, C.L., Duara, R., Robertson-Tchabo, E., Koziarz, B., Cutler, N. R., and Rapoport, S. I. (1986). Relations among age, visual memory, and resting cerebral metabolism in 40 healthy men. Brain and Cognition, 5, 412–427.PubMedCrossRefGoogle Scholar
  37. Heiss, W. D., Herholz, K., Pawlik, G., Wagner, R., and Wienhard, K. (1986). Positron emission tomography in neuropsychology. Neuropsychologia, 24, 141–149.PubMedCrossRefGoogle Scholar
  38. Hoffman, E. J., and Phelps M. E. (1986). Positron emission tomography: Principles and quantitation. In M. E. Phelps, J. C. Mazziotta, and H. R. Scheiben (Eds.), Positron emission tomography and autoradiography: Principles and applications for the brain and heart (pp 237–286 ). New York: Raven Press.Google Scholar
  39. Huff, F. J. (1984). Alzheimer’s disease: Advances in basic research and therapies. Neurobiology of Aging, 5, 157–179.PubMedCrossRefGoogle Scholar
  40. Kessler, R. M., Ellis, J. R., and Eden, M. (1984). Analysis of emission tomographic scan to date: Limitations imposed by resolution and background. Journal of Computer Assisted Tomography, 8, 514–522.PubMedCrossRefGoogle Scholar
  41. Kushner, M., Rosenquist, A., Alavi, A., Reivich, M., Greenberg, J., and Cobbs, W. (1982). Macular and peripheral visual field representation in striate cortex demonstrated by positron emission tomography. Annals of Neurology, 12, 89.Google Scholar
  42. Mazziotta, J. C., and Phelps, M. E. (1985a). Human neuropsychological imaging studies of local brain metabolism: Strategies and results. In L. Sokoloff (Ed.), Brain imaging and brain function, (pp. 121–137 ). New York: Raven.Google Scholar
  43. Mazziotta, J. C., and Phelps, M. E. (1985b). Results and strategies in studies of human sensory stimulation and deprivation with positron emission tomography. In T. Greitz, D. H. Ingvar, and L. W. Widen (Eds.), The metabolism of the human brain studied with positron emission tomography (pp. 315–334 ). New York: Raven Press.Google Scholar
  44. Mazziotta, J. C., Phelps, M. E., and Carson, R. E. (1984). Tomographic mapping of human cerebral metabolism: Subcortical responses to auditory and visual stimulation. Neurology, 34, 825–928.PubMedCrossRefGoogle Scholar
  45. Mazziotta, J. C., Phelps, M. E., Carson, R. E., and Kuhl, D. E. (1982a) Tomographic mapping of human cerebral metabolism: Auditory stimulation. Neurology, 32, 921–937.PubMedCrossRefGoogle Scholar
  46. Mazziotta, J. C., Phelps, M. E., Carson, R. E. and Kuhl, D. E. (1982b). Tomographic mapping of human cerebral metabolism: Sensory deprivation. Annals of Neurology, 12, 435–444.PubMedCrossRefGoogle Scholar
  47. Mazziotta, J. C., Phelps, M. E., Miller J., and Kuhl, D. E. (1981) Tomographic mapping of human cerebral metabolism: Normal unstimulated state. Neurology, 31, 503–516.CrossRefGoogle Scholar
  48. McGeer, P. L., Kamo, H., Harrop, R., Li, D. K. B., Tuokko, H., McGeer, E. G., Adam, M. J., Ammann, W., Beattie, B. L., Calne, D. B., Martin, W. R. W., Pate, B. D., Rogers, J. G., Ruth, T. J., Sayre, C. I., and Stoessel, A. J. (1986). Positron emission tomography in patients with clinically diagnosed Alzheimer’s disease. Canadian Medical Association Journal, 134, 597–607.PubMedGoogle Scholar
  49. Neale, J. M. and Leibert, R. M. (1980). Science and behavior. Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
  50. Parks, R.,Loewenstein, D.A., Dodrill, K.L., Barker, W.W., Yoshii, F., Chang, J.Y., Emran, A., Apicella, A., Sheremata, W.A., and Duara, R. (In press). Cerebral metabolic effects of a verbal fluency test: A PET scan study. Journal of Clinical and Experimental Neuropsychology.Google Scholar
  51. Phelps, M. E., Huang, S. C., Hoffman, E. J., Selin, C., Sokoloff, L., and Kuhl, D. E. (1979). Tomographic measurement of local cerebral glucose metabolic rate in humans (F-18) 2-fluoro-2-deoxy-D-glucose: Validation of method. Annals of Neurology, 6, 371–388.Google Scholar
  52. Phelps, M. E., Mazziotta, J. C., Kuhl, D. E., Nuwer, M., Packwood, J., Metter, and Engel, J. (1981). Tomographic mapping of human cerebral metabolism: Visual stimulation and deprivation. Neurology, 31, 517–529.Google Scholar
  53. Phelps, M. E. (1981). Positron computed tomography studies of cerebral glucose metabolism in man: Theory and application in nuclear medicine. Seminars in Nuclear Medicine, 11, 32–49.PubMedCrossRefGoogle Scholar
  54. Phelps, M. E., Kuhl, D. E., and Mazziotta, J. C. (1981) Metabolic mapping of the brain’s re- sponse to visual stimulation: Studies in humans. Science, 211, 1445–1448.PubMedCrossRefGoogle Scholar
  55. Phelps, M. E., Mazziotta, J. C., Huang, S. C. (1982). Review: Study of cerebral function with positron emission tomography. Journal of Cerebral Blood Flow and Metabolism, 2, 113–162.PubMedCrossRefGoogle Scholar
  56. Phelps, M. E., and Mazziotta, J. C. (1983). Human sensory stimulation and deprivation as demonstrated by positron emission tomography. In W. D. Heiss and M. E. Phelps (Eds.), Positron emission tomography of the brain (pp. 139–152 ). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  57. Phelps, M. E., Mazziotta, J. C., Schelbert, H. R., Hawkins, R. A., and Engel, J. (1985). Clinical PET: What are the issues? The Journal of Nuclear Medicine, 26, 1353–1358.Google Scholar
  58. Reivich, M., Alavi, A., Greenberg, J.H., Fowler, J., Christman, D., MacGregor, R., Jones, S.C., London, J., Shiue, C., and Yonekura, Y. (1982). Use of 2-deoxy-D[1–11C] glucose for the determination of local glucose metabolism in humans: Variation within and between subjects. Journal of Cerebral Blood Flow and Metabolism, 2, 307–319.PubMedCrossRefGoogle Scholar
  59. Reivich, M., Greenberg, J., Alavi, A., Christman, J. Fowler, P., Hand A., Rosenquist, W., Rintelmann, W., and Wolf, A. (1979a). The use of the F-fluorodeoxyglucose technique for mapping functional neural pathways in man. Acta Neurologica Scandinavica, 60 (Suppl. 72), 198–199.CrossRefGoogle Scholar
  60. Reivich, M., Kuhl, D., Wolf, A., Greenberg, J., Phelps, M., Ido, T., Casella, V., Fowler, J., Hoffman, E., Alavi, A., Som, P., and Sokoloff, L. (1979b). The [18F] fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circulation Research, 44, 127–137.PubMedCrossRefGoogle Scholar
  61. Reivich, M., Alavi, A., Gur, R. C., and Greenberg, J. (1985). Determination of local cerebral glucose metabolism in Humans: Methodology and applications to the study of sensory and cognitive stimuli. In L. Sokoloff (Ed.), Brain imaging and brain function (pp. 105–119 ). New York: Raven.Google Scholar
  62. Reivich, M., and Alavi. (1985) Effect of psychophysiological stimuli on local cerebral glucose consumption in humans. In T. Greitz, D. H. Ingvar, and L. W. Widen (Eds.), The metabolism of the human brain studied with positron emission tomography (pp. 305313 ). New York: Raven Press.Google Scholar
  63. Reivich, M., Gur, R. and Alavi, A. (1983). Positron emission tomographic studies of sensory stimuli, cognitive processes and anxiety. Human Neurobiology 2, 25–33.PubMedGoogle Scholar
  64. Reivich, M., and Gur, R. (1985) Cerebral metabolic effects of sensory and cognitive stimuli in normal subjects. In M. Reivich and A. Alavi (Eds.), Positron emission tomography (pp. 329–344 ). New York: Alan R. Liss.Google Scholar
  65. Reivich, M., Rosen, A. D., Kushner, R. C., Gur, R. C., and Alavi, A. (1983). Local cerebral glucose consumption in man in health and disease. In P. L. Magistretti (Ed.), Functional Radionuclide Imaging of the Brain (pp. 311–318 ). New York: Raven Press.Google Scholar
  66. Searleman, A. (1977). A review of right hemisphere linguistic capabilities. Psychological Bulletin, 84, 503–528.PubMedCrossRefGoogle Scholar
  67. Seashore, C. E., Lewis, D., and Sactveit, J. G. (1960). Seashore measures of musical talents, Series B. New York: Psychological Corporation.Google Scholar
  68. Sokoloff, L., Reivich, M., Kennedy, C., DesRosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurado, O., and Shinohara, M. (1977). The [14C1 deoxyglucose method for the measurement of local cerebral glucose utilization; theory, procedure, and normal values in the conscious and anesthetized albino rat. Journal of Neurochemistry, 28, 897–916.PubMedCrossRefGoogle Scholar
  69. Sokoloff, L. (1985). Basic principles in imaging of regional cerebral metabolic rates. In L. Sokoloff (Ed.), Brain imaging and brain function (pp. 21–49 ). New York: Raven.Google Scholar
  70. Tamminga, C. A., Foster, N. L., Fedio, E. D., Bird, E. D., and Chase, T. N. (1987). Alzheimer’s disease: Low cerebral somatostatin levels correlate with impaired function and cortical metabolism. Neurology, 37, 161–165.PubMedCrossRefGoogle Scholar
  71. Ter-Pogossian, M. M. (1985). Positron emission tomography instrumentation. In M. Reivich and A. Alavi (Eds.), Positron emission tomography (pp. 43–61 ). New York: Alan R. Liss.Google Scholar
  72. Yoshii, F., Barker, W.W., Chang, J.Y., Apicella, A., Ginsberg, M., Emran, A., and Duara, R. (1986). Effect of age and gender on resting and visually activated cerebral glucose metabolism. Society of Neuroscience, 12 (2), 1509.Google Scholar
  73. Young, A.B., Penney, J.B., Starosta-Rubenstein, S., Markel, D.S., Berent, S., Giordani, B., Ehrenkaufer, R., Jewett, D., and Hichwa, R. (1986). PET scan investigations of Huntington’s disease: Cerebral metabolic correlates of neurological features and functional decline. Annals of Neurology, 20, 296–303.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Randolph W. Parks
  • David A. Loewenstein
  • Jen Y. Chang

There are no affiliations available

Personalised recommendations