Advertisement

Haemopoietic Regulation and the Role of the Macrophage in Erythropoietic Gene Expression

  • Ivan N. Rich
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 34)

Abstract

The macrophage is considered as an “active” component of the haemopoietic cellular microenvironment with respect to erythropoietin (epo) production during embryonic, foetal and adult erythropoiesis. Emphasis is placed on steady-state rather than pathophysiological conditions. In addition, the signals capable of affecting the functional capacity of the macrophage with regard to colony stimulating factor and epo production are also taken into account. Evidence is given demonstrating that a subpopulation of resident macrophages in vitro and in the mouse bone marrow, under normal conditions, can express the epo gene. These results indicate that erythropoiesis can be regulated by short-range or cell-to-cell interactions within the bone marrow.

Keywords

Foetal Liver Mouse Bone Marrow Cellular Microenvironment Erythropoietin Production Hemopoietic Growth Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dexter, T.M. 1981. Self-renewing haemopoietic progenitor cells and the factors controlling proliferation and differentiation. In: Microenvironments in Haemopoietic and Lymphoid Differentiation. Ciba Foundation Symposium. Vol 84. 22–31.Google Scholar
  2. 2.
    Moore, M.A.S., and J.J.T. Owen. 1967. Stem cell migration in developing myeloid systems. Lancet 2: 658–659.CrossRefGoogle Scholar
  3. 3.
    Johnson, G.R. and M.A.S. Moore. 1975. Role of stem cell migration of mouse fetal liver hemopoiesis. Nature 258: 726–728.PubMedCrossRefGoogle Scholar
  4. 4.
    Wong, P.M.C., S-W. Chung, S.M. Reicheld, and D.H.K. Chui. 1986 Hemoglobin switching during murine embryonic development. Evidence for two populations of embryonic erythropoietic progenitor cells. Blood 67: 716–721.PubMedGoogle Scholar
  5. 5.
    Wong, P.M.C., S-W. Chung, D.H.K. Chui, and C.J. Eaves. 1986. Properties of the earliest clonogenic hemopoietic precursors to appear in the developing murine yolk sac. Proc. Natl. Acad. Sci. USA 38: 3851–3854.CrossRefGoogle Scholar
  6. 6.
    Fleischman, R.A., R.P. Custer, and B. Mintz. 1982. Totipotent hemopoietic stem cells: Normal self-renewal and differentiation after transplantation between fetuses. Cell 30: 351–359.PubMedCrossRefGoogle Scholar
  7. 7.
    Bessis, M.C. and J. Breton-Gorius. 1962. Iron metabolism in the bone marrow as seen by electron microscopy: a critical Review. Blood 19: 635–663.PubMedGoogle Scholar
  8. 8.
    Jacobson, L.O., E.K. Marks, and E.O. Gaston. 1959. Studies on erythropoiesis. II. The effect of transfusion-induced polycythemia in the mother on the fetus. Blood 14: 644–652.PubMedGoogle Scholar
  9. 9.
    Lucarelli, G., A. Porcellini, C. Carnevali, A. Carmena, and F. Stohlman, Jr. 1968. Fetal and neonatal erythropoiesis. Ann. N.Y. Acad. Sci. 149: 544–559.PubMedCrossRefGoogle Scholar
  10. 10.
    Bleiberg, I. and M. Feldman. 1969. On the regulation of hemopoietic spleen colonies produced by embryonic and adult cells. Dev. Biol. 19: 566–580.PubMedCrossRefGoogle Scholar
  11. 11.
    Cole, R.J. and J. Paul. 1966. The effects of erythropoietin on haemsynthesis in mouse yolk sac and cultured foetal liver cells. J. Embryol. Exp. Morph. 15: 245–260.PubMedGoogle Scholar
  12. 12.
    Cole, R.J., T. Regen, S.L. White, and E.M. Cheek. 1975. The relationship between erythropoietin-dependent cellular differentiation and colony-forming ability in prenatal haemopoietic tissue. J. Embryol. Exp. Morph. 34: 575–588.PubMedGoogle Scholar
  13. 13.
    Stevenson, J.R., A.A. Axelrad, D.L. McLeod, and M.M. Shreeve. 1971. Induction of colonies of haemoglobin-synthesizing cells by erythropoietin in vitro. Proc. Natl. Acad. Sci. USA 68: 1542–1546.CrossRefGoogle Scholar
  14. 14.
    Rich, I.N. and B. Kubanek. 1979. The ontogeny of erythropoiesis in the mouse detected by the erythroid colony-forming technique. I. Hepatic and maternal erythropoiesis. J. Embryol. Exp. Morph. 50: 57–74.PubMedGoogle Scholar
  15. 15.
    Rich, I.N. and B. Kubanek. 1980. The ontogeny of erythropoiesis in the mouse detected by the erythroid colony-forming technique. II. Transition in erythropoietin sensitivity during development. J. Embryol. Exp. Morph. 58: 143–155.PubMedGoogle Scholar
  16. 16.
    Labastie, M-C., J-P. Thiery, and N.M. Le Douarin. 1984. Mouse yolk sac and intraembryonic tissues produce factors able to elicit differentiation of erythroid burst-forming units and colony-forming units respectively. Proc. Natl. Acad. Sci. USA 81: 1453–1456.PubMedCrossRefGoogle Scholar
  17. 17.
    Dieterlan-Lievre, F. 1987. Respective roles of programme and differentiation factors during hemoglobin switching in the embryo. In: Molecular and Cellular Aspects of Erythropoietin and Erythropoiesis, Rich, I.N. editor. NATO ASI Series, Vol H8, Springer-Verlag Berlin Heidelberg, pp 127–145.Google Scholar
  18. 18.
    Gruber, D.F., J.R. Zucali, and E.A. Mirand. 1977. Identification of erythropoietin producing cells in fetal mouse liver cultures. Exp. Hemat. 5: 392–398.PubMedGoogle Scholar
  19. 19.
    Kelemen, E. and M. Janossa. 1980. Macrophages are the first differentiated blood cells formed in human embryonic liver. Exp. Hemat. 8: 996PubMedGoogle Scholar
  20. 20.
    Hara, H. and M. Ogawa. 1976. Erythropoietic precursors in mice with phenylhydrazine-induced anemia. Am. J. Hemat. 1: 453–458.PubMedCrossRefGoogle Scholar
  21. 21.
    Boggs, D.R., A. Geist, and P.A. Chervenick. 1969. Contribution of the mouse spleen to post-hemorrhagoic erythropoiesis. Life Sci. 8: 587–599.PubMedCrossRefGoogle Scholar
  22. 22.
    Crandall, T.L. and D.R. Boggs. 1980. Response of hepatic hematopoiesis to whole body irradiation. Exp. Hemat. 8: 25–31.PubMedGoogle Scholar
  23. 23.
    Koury, M.J., S.T. Sayer, and M.C. Bondurant. 1984. Splenic erythro-blasts in anemia-inducing Friend disease. A source of cells for studies of erythropoietin-mediated differentiation. J. Cell Physiol. 121: 526–532.PubMedCrossRefGoogle Scholar
  24. 24.
    Kreja, L. and H-J. Seidel. 1985. Role of the spleen in Friend virus (F-MULV-P) erythroleukemia. Exp. Hemat. 13: 623–628.PubMedGoogle Scholar
  25. 25.
    Opitz, U., H-J. Seidel, and I.N. Rich. 1977. Erythroid stem cells in Rauscher virus-infected mice. Blut 35: 35–44.PubMedCrossRefGoogle Scholar
  26. 26.
    Arnold, R., W. Calvo, B. Heymer, T. Schmeiser, H. Heimpel, and B. Kubanek. 1985. Extramedullary haemopoiesis after bone marrow transplantation. Scand. J. Haemat. 34: 9–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Fruhman, G.J. 1968. Blood formation in the pregnant mouse. Blood 31: 242–248.PubMedGoogle Scholar
  28. 28.
    Peschle, C., I.A. Rappaport, G.P. Jori, M. Chiarello, and A.S. Gordon. 1976. Sustained erythropoietin productin in nephrectomized rats subjected to hypoxia. Brit. J. Haemat. 25: 187.CrossRefGoogle Scholar
  29. 29.
    Schooley, J.C. and L.J. Mahlman. 1974. Extrarenal erythropoietin production by the liver in the weanling rat. Proc. J. Soc. Exptl. Biol. Med. 145: 1081–1083.Google Scholar
  30. 30.
    Adams, D.O. and T.A. Hamilton. 1984. The cell biology of macrophage activation. Ann. Rev. Immunol. 2: 283–318.CrossRefGoogle Scholar
  31. 31.
    Rich, I.N. 1986. A role for the macrophage in normal hemopoiesis. I. Functional capacity of bone marrow-derived macrophages to release hemopoietic growth factors. Exp. Hemat. 14: 738–745.PubMedGoogle Scholar
  32. 32.
    Cronkite, E.P., H. Burlington, A.D. Chanana, and D.D. Joel. 1985. Regulation of granulopoiesis. in: Hematopoietic Stem Cell Physiology. Cronkite, E.P., Dainiak, N., McCaffrey, R.P., Palek, J. and Quenberry, P.J., editors. Alan R. Liss, Inc., New York. 129 - 144.Google Scholar
  33. 33.
    Broxmeyer, H.E. 1984. Negative regulators of hematopoiesis. In: Long-Term Bone Marrow Culture. Alan R. Liss, Inc., New York. 363–397.Google Scholar
  34. 34.
    Sawatzki, G. 1987. The role of iron-binding proteins in bacterial infection. Ins Iron Transport in Microbes, Plants and Animals. Winkelman, G., von de Helm, D. and Neilands, J.B., editors. VCH Verlagsgesellschaft, Weinheim, F.R.G. 477–489.Google Scholar
  35. 35.
    Robinson, W.A. and A. Mangalik. 1975. The kinetics and regulation of granulopoiesis. Sem. Hemat. 12: 7–25.Google Scholar
  36. 36.
    Quesenberry, P., A. Morley, F. Stohlman, Jr., K. Richard, D. Howard, and M. Smith. 1972. Effect of endotoxin on granulopoiesis and colony-stimulating factor. New Engl. J. Med. 286: 227.PubMedCrossRefGoogle Scholar
  37. 37.
    Rich, I.N. and G. Sawatzki. 1987. The role of lactoferrin in regulating colony stimulating factor production. In: The Inhibition of Hematopoiesis. Nayman, A., Guigon, M., Gorin, N-C., and Mary, J-Y., editors. John Libbey Eurotext Ltd. 162: 63–66.Google Scholar
  38. 38.
    Strickmans, P., A. Deforge, and R.B. Amson. 1986. Lactoferrin: No evidence for its role in regulation of CSA production by human lymphocytes and monocytes. Blood Cells 10: 369–395.Google Scholar
  39. 39.
    Winton, E.F., J.M. Kinkade, W.R. Vogler, M.B. Parker, and K.C. Barnes. 1981. In vitro studies of lactoferrin and murine granulopoiesis. Blood 57: 574–578.PubMedGoogle Scholar
  40. 40.
    Rich, I.N. 1986. A role for the macrophage in normal hemopoiesis. II. Effect of varying physiological oxygen tensions on the release of hemopoietic growth factors from bone marrow-derived macrophages in vitro. Exp. Hemat. 14: 746–751.PubMedGoogle Scholar
  41. 41.
    Bondurant, M. and M. Koury. 1986. Anemia induces accumulation of erythropoietin mRNA in the kidney and liver. Mol. Cell Biol. 6: 2731–2733.PubMedGoogle Scholar
  42. 42.
    Schuster, S.J., J.H. Wilson, A.J. Erselv, and J. Caro. 1987. Physiologic regulation and tissue localisation of renal erythropoietin messenger RNA. Blood. 70: 316–318.PubMedGoogle Scholar
  43. 43.
    Jacobson, L.O., E. Goldwasser, W. Fried, and L. Plazck. 1957. Role of the kidney in erythropoiesis. Nature. 179: 633–634.PubMedCrossRefGoogle Scholar
  44. 44.
    Sherwood, J.B., and E. Goldwasser. 1978. Extraction of erythropoietin from normal kidneys. Endocrinol. 103: 866–870.CrossRefGoogle Scholar
  45. 45.
    Goldwasser, E., J. McDonald, and N. Beru. 1987. The molecular biology of erythropoietin and the expression of its gene, in: Molecular and Cellular Aspects of Erythropoietin and Erythropoiesis. Rich, I.N., editor. NATO ASI Series, Vol. H8. Springer-Verlag, Heidelberg. 11–21.CrossRefGoogle Scholar
  46. 46.
    Caro, J. and A.J. Erselv. 1984. Biologic and immunologic erythropoietin in extracts from hypoxic whole rat kidneys and in their glomerular and tubular factions. J. Lab. Clin. Med. 103: 922–931.PubMedGoogle Scholar
  47. 47.
    Caro, J., J. Hickey, and A.J. Erslev. 1984. Erythropoietin production by an established kidney proximal tubular cell line (LLCPKl). Exp. Hemat. 12: 357A.Google Scholar
  48. 48.
    Fisher, J.W., G. Taylor, and D. Porteous. 1965. Localisation of erythropoietin in glomeruli of sheep kidney by fluorescent antibody technique. Nature. 205–611.Google Scholar
  49. 49.
    Burlington, H., E.P. Cronkite, U. Reincke, and E. Zanjani. 1972. Erythropoietin production in cultures of goat renal glomeruli. Proc. Natl. Acad. Sci. USA. 69: 3547.PubMedCrossRefGoogle Scholar
  50. 50.
    Kurtz, A., W. Jelman, F. Sinowatz, and C. Bauer. 1983. Renal mesangial cell cultures as a model for study of erythropoietin production. Proc. Natl. Acad. Sci. USA. 80: 4008.PubMedCrossRefGoogle Scholar
  51. 51.
    Jelkman, W., A. Kurtz, and C. Bauer. 1983. Extraction of erythropoietin from isolated renal glomeruli of hypoxic rats. Exp. Hemat. 11: 581–588.Google Scholar
  52. 52.
    Rich, I.N. 1987. Erythropoietin production by macrophages: Cellular response to physiological oxygen tensions and detection of erythropoietin gene expression by in situ hybridisation. In: Molecular and Cellular Aspects of Erythropoietin and Erythropoiesis. Rich, I.N. editor. NATO ASI series, Vol H8. Springer-Verlag, Heidelberg. 291–310.CrossRefGoogle Scholar
  53. 53.
    Vogt, Ch., S. Pentz, and I.N. Rich. A role for the macrophage in normal hemopoiesis: III. In vitro and in vivo in situ hybridisation. Submitted for publication.Google Scholar
  54. 54.
    Rich, I.N., Ch. Vogt, and S. Pentz. 1988. Erythropoietin gene expression in vitro and in vivo detection by in situ hybridisation. Blood Cells. In Press.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Ivan N. Rich
    • 1
  1. 1.Department of Transfusion MedicineUniversity of UlmUlmGermany

Personalised recommendations