Exogenous and Endogenous Regulations of Human Megakaryocytopoiesis

  • Alan M. Gewirtz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 34)


Megakaryocytopoiesis may be viewed as a developmental continuum which begins when an undifferentiated hematopoietic stem cell commits to maturation within this lineage (for recent review see ref.#l) The process of commitment results in the generation of megakaryocyte progenitor cells (CFU-Meg). When appropriately stimulated, CFU-Meg are capable of intense proliferative activity which determines the numbers of megakaryocytes which will ultimately populate the bone marrow. As proliferative activity declines, CFU-Meg progeny mature into precursor cells which terminally differentiate into polyploid megakaryocytes capable of releasing several thousand platelets each into the circulation.


Reactive Thrombocytosis Human Megakaryocyte Mature Megakaryocyte Density Gradient Sedimentation Progenitor Cell Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gewirtz, A.M. 1986. Human megakaryocytopoiesis. Seminars in Hematology 23: 27–42.PubMedGoogle Scholar
  2. 2.
    Hoffman, R., H.H. Yank, E. Bruno, and J. Straneva. 1985. Purification and partial characterization of a megakaryocyte colony stimulation factor from human plasma. J. Clin. Invest. 75: 1174–1182.PubMedCrossRefGoogle Scholar
  3. 3.
    Kaushansky, K., P. O’Hara, K. Berner, G.M. Segal, F.S. Hagen, and J. W. Adamson. 1986. Genomic cloning, characterization, and multilineage growth-promoting activity of human granulocyte- macrophage colony-stimulating activity. Proc. Natl. Acad. Sci. USA 83: 3101–3105.PubMedCrossRefGoogle Scholar
  4. 4.
    Leary, A.G., Y.C. Yang, S.C. Clark, J.C. Gasson, D.W., Golde, and M. Ogawa. 1987. Recombinant Gibbon Interleukin-3 supports formation of human multilineage colonies and blast cell colonies in culture: Comparison with recombinant human granulocyte-macrophage colony stimulating factor. Blood 70: 1343–1348.PubMedGoogle Scholar
  5. 5.
    McDonald, T.P., M. Cottrell, and R.D. Clift. 1985. Studies on the purification of thrombopoietin from kidney cell culture medium. J. Lab. Clin. Med. 106: 162–174.PubMedGoogle Scholar
  6. 6.
    Hill, R., and J. Levin. 1986. Partial Purification of Thrombopoietin using lectin chromatography. Exp. Hematol. 14: 752–759.PubMedGoogle Scholar
  7. 7.
    Greenberg, S.M., D.J. Kuter, and R.D. Rosenberg. 1987. In vitro stimulation of megakaryocyte maturation by megakaryocyte stimulatory factor. J. Biol. Chem. 262: 3269–3277.PubMedGoogle Scholar
  8. 8.
    Tayrien, G. and R.D. Rosenberg. 1987. Purification and properties of a megakaryocyte stimulatory factor present both in the serum — free conditioned medium of human embryonic kidney cells and in thrombocytopenic plasma. J. Biol. Chem. 262: 3262–3268.PubMedGoogle Scholar
  9. 9.
    Ishibashi, T., S.A. Kozial, and S.A. Burstein. 1987. Human recombinant erythropoietin promotes differentiation of murine megakaryocytes in vitro. J. Clin. Invest. 79: 286–289.PubMedCrossRefGoogle Scholar
  10. 10.
    Nagasawa, T., T. Sakuri, H. Kashiwagi, and T. Abe. 1986. Cell-mediated amegakaryocytic thrombocytopenia associated with systemic lupus erythematosus. Blood 67: 479–483.PubMedGoogle Scholar
  11. 11.
    Gewirtz, A.M., M.C. Sacchitti, R. Bien, and W.E. Barry. 1986. Cell mediated suppression of megakaryocytopoiesis in Acquired Amegakaryocytic Thrombocytopenic Purpura. Blood 68: 619–626.PubMedGoogle Scholar
  12. 12.
    Vainchenker, W., J. Chapman, J.F. Deschamps, G. Vinci, J. Bouguet, M. Titeux, and J. Breton-Gorius. 1982. Normal human serum contains a factor(s) capable of inhibiting megakaryocyte colony formation. Exp. Hematol. 10: 650–660.PubMedGoogle Scholar
  13. 13.
    Messner, H.A., N. Jamal, and C. Izaquirre. 1982. The growth of large megakaryocyte colonies from human bone marrow. J. Cell Physiol. [Suppl.] 1: 45–51.CrossRefGoogle Scholar
  14. 14.
    Kimura, H. S. A. Burstein, D. Thorning, J.S. Powell, L.A. Harker, P.J. Failkow, and J. W. Adamson. 1984. Human megakaryocyte progenitors (CFU-M) assayed in methylcellulose: Physical characteristics and requirements for growth. J. Cell Physiol. 118: 87–94.PubMedCrossRefGoogle Scholar
  15. 15.
    Ishibashi, T., S.L. Miller, and S.A. Burstein. 1987. Type B transforming growth factor is a potent inhibitor of murine megakaryocytopoiesis in vitro. Blood 69: 1737–1741.PubMedGoogle Scholar
  16. 16.
    Dessypris, E.N., J.H. Gleaton, S.T. Sawyer, and O.L. Armstrong. 1987. Suppression of maturation of megakaryocyte colony forming unit in vitro by a platelet-released glycoprotein. J. Cell. Physiol. 130: 361–368.PubMedCrossRefGoogle Scholar
  17. 17.
    Gewirtz, A., M. Keefer, K. Doshi, A. Annamali, H.C. Chiu, and R.W. Colman. 1986. Biology of Human Megakaryocyte Factor V. Blood 67: 1639–1648.PubMedGoogle Scholar
  18. 18.
    Gewirtz, A. 1987. Recent methodologic advances in the study of human megakaryocyte development and function. In Modern methods of pharmacology: Methods for studying platelet and megakaryocytes (R.W. Colman and B.J. Smith, eds.) pp 1–18, Alan R. Liss, Inc., New York.Google Scholar
  19. 19.
    Gewirtz, A.M., E. Bruno, J. Elwell, and R. Hoffman. 1983. In vitro studies of megakaryocytopoiesis in thrombocytotic disorders of man. Blood 61: 384–389.PubMedGoogle Scholar
  20. 20.
    Gewirtz, A.M., M.K. Sacchetti, R. Bien, and W. Barry. 1986. Cell mediated suppression of megakaryocytopoiesis in acquired amegakaryocytic thrombocytopenic purpura. Blood 68: 619–626.PubMedGoogle Scholar
  21. 21.
    Gewirtz, A.M., W.Y. Xu, and K.F. Mangan. 1987. Role of natural killer cells, in comparison with T lymphocytes and monocytes, in the regulation of normal human megakaryocytopoiesis in vitro. J. Immunol. 139: 2915–2925.PubMedGoogle Scholar
  22. 22.
    Mangan, K.F., M. Hartnett, S.A. Matis, A. Winkelstein, and T. Abo. 1984. Natural killer cells suppress human erythroid stem cell proliferation in vitro. Blood 63: 260.PubMedGoogle Scholar
  23. 23.
    Timonen, T., C. W. Reynolds, J.R. Ortaldo, and R.B. Herberman. 1982. Isolation of human and rat natural killer cells. J. Immunol. Methods. 51: 269.PubMedCrossRefGoogle Scholar
  24. 24.
    Indiveri, F., B.S. Wilson, M.A. Pellegrino, and S. Ferrone. 1979. Detection of human histocompatibility (HLA) antigens with an indirect rosette microassay. J. Immunol. Methods. 29: 101.PubMedCrossRefGoogle Scholar
  25. 25.
    Weiner, W.S., C. Bianco, V. Nussenzweig. 1973. Enhanced binding of neuraminidase treated sheep erythrocytes to human T lymphocytes. Blood 42: 939.PubMedGoogle Scholar
  26. 26.
    Rucinski, B., S. Niewwiarowski, P. James, D.A. Walz, and A. Budzynski. 1979. Antiheparin proteins secreted by human platelets. Purification, characterization, and radioimmunoassay. Blood 53: 47–62.PubMedGoogle Scholar
  27. 27.
    Neland, A.C., D. Catovsky, D. Linch, J.C. Cawley, P. Beverley, J.F. San Miguel, E.C. Gordon-Smith, T.E. Blecher, S. Shahriari, and S. Varadi. 1984. Chronic T cell lymphocytosis: a review of 21 cases. Br. J. Haematol. 58: 433.CrossRefGoogle Scholar
  28. 28.
    Reynolds, C.W., and K.A. Foon. 1984. T-lymphoproliferative disease and related disorders in humans and experimental animals: A review of the clinical, cellular, and functional characteristics. Blood 64: 1146.PubMedGoogle Scholar
  29. 29.
    Levitt, L., T.J. Kipps, E.G. Engleman, and P.L. Greenberg. 1985. Human bone marrow and peripheral blood T lymphocyte depletion: Efficacy and effects of both T lymphocytes and monocytes on growth of hematopoietic progenitors. Blood 65: 663–679.PubMedGoogle Scholar
  30. 30.
    Lipton, J.M., and D. Nathan. 1985. Interaction between lymphocytes and macrophages in hematopoiesis. In Hematopoietic Stem Cells. D.W. Golde, and F. Takaku, eds. Marcel Dekker, New York, pp 145–202.Google Scholar
  31. 31.
    Ebbe, S., and E. Phalen. 1979. Does autoregulation of megakaryocytopoiesis occur? Blood Cells 5: 123–138.PubMedGoogle Scholar
  32. 32.
    Gewirtz, A.M., and R. Hoffman. 1986. Transitory hypomegakaryocytic thrombocytopenic purpura. Etiologic association with ethanol abuse and implication regarding regulation of human megakaryocytopoiesis. Br. J. Haematol. 62: 333–344.PubMedCrossRefGoogle Scholar
  33. 33.
    Katz, I.R., M.K. Hoffmann, M.B. Zucker, M.K. Bell, and G.J. Thorbecke. 1985. A platelet derived immunoregulatory serum factor with T cell affinity. J. Immunol. 134: 3199–3203.PubMedGoogle Scholar
  34. 34.
    Katz, I.R., G.J. Thorbecke, M.K. Bell, Z. Yin, D. Clarke, and M.B. Zucker. 1986. Protease-induced immunoregulatory activity of platelet factor 4. Proc. Natl. Acad. Sci. USA. 83: 3491–3495.PubMedCrossRefGoogle Scholar
  35. 35.
    Geissler, D., G. Konwalinka, C. Peschel, K. Grunewald, R. Odavic, and H. Braunsteiner. 1985. A regulatory role of activated T lymphocytes on human megakaryocytopoiesis. Br. J. Haematol. 60: 233–238.PubMedCrossRefGoogle Scholar
  36. 36.
    Geissler, D., L. Lu, E. Bruno, H. Yank, H. Broxmeyer, and R. Hoffman. 1986. The influence of T lymphocyte sub-sets and humoral factors on colony formation by human bone marrow and blood megakaryocyte progenitor cells in vitro. J. Immunol. 137: 2508–2513.PubMedGoogle Scholar
  37. 37.
    Capitanio, A.M., S. Niewiarowski, B. Rucinski, G.P. Tuszynki, C.S. Cierniewski, D. Hershock, and E. Kornecki. 1985. Interaction of platelet factor 4 with human platelets. Biochem Biophys Acta. 839: 161–173.PubMedCrossRefGoogle Scholar
  38. 38.
    Sporn, M.B. and A.B. Roberts. 1985. Autocrine growth factors and cancer. Nature 313: 745–747.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Alan M. Gewirtz
    • 1
    • 2
    • 3
  1. 1.Section of Hematology/Oncology, Department of MedicineTemple University School of MedicinePhiladelphiaUSA
  2. 2.Section of Hematology/Oncology, Department of PathologyTemple University School of MedicinePhiladelphiaUSA
  3. 3.Thrombosis Research CenterTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations