Advertisement

Expression of Heme Oxygenase in Hemopoiesis

  • Nader G. Abraham
  • Steve M. Mitrione
  • W. John
  • B. Hodgson
  • Richard D. Levere
  • Shigeki Shibahara
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 34)

Abstract

Heme oxygenase has been purified to electrophoretic homogeneity from detergent solubilized adult human liver microsomes. Treatment of microsomes with Triton X-100, sodium cholate and subsequent batchwise DEAE-cellulose, 2′, 5′ ADP-sepharose 4B, Sepharose CLB and hydroxylapatite column resulted in 177% yield of the purified heme oxygenase. The reconsituted system of heme oxygenase, composed of heme oxygenase, NADPH cytochrome c (P450) reductase and biliverdin reductase was equiactive with 1 mM NADPH and 4 nM NADH and showed complete dependence on added heme for catalytic activity. The Km values for NADPH and NADH were.046 and.526 mM, respectively. While NADPH concentration was held constant, the Km value for heme was 1.01 μM with a specific activity of 583 unit/mg protein. The activity of the reconstituted heme oxygenase system was not affected by preincubation with heavy metals despite their inhibitory effect of NADPH cytochrome c (P450) reductase and biliverdin reductase. However, the metalloporphyrins of these heavy metals were found to be strong inhibitors of the reconsituted system with Ki values of 0.015, 0.6, 2.3 and 5 μM for Sn-, Co-, Zn- and Mg- protoporphyrins, respectively. Similarly, the sulfhydryl inactivating reagents, HgCl2, iodoacetamide and p-chloromercurylbenzoate, inhibited the reconstituted heme oxygenase activity.

Rabbits were immunized with purified human liver heme oxygenase and the resulting antibody preparation was used to examine the species specificity of the enzyme. Microsomal protein with a molecular weight of 32,000 from rat and human liver as well as HepG2 cells were identified on dot and Western blots by their reaction with the anti-heme oxygenase similar to the purified enzyme protein. Anti-heme oxygenase precipitated quantitatively, the entire heme oxygenase of rat liver microsomes obtained from animals maintained on standard diet. The human bone marrow microsomal heme oxygenase activity was also quantitatively precipitated by this antibody. Antibody inhibition of rat and human heme xoygenase demonstrated a degree of conservation of both enzyme proteins between the species. As judged by Western blotting, the anti-heme oxygenase recognized only a single protein in spleen, liver, kidney, brain, heart, bone marrow, intei tine and corneal epithelium.

The human heme oxygenase cDNA was isolated by screening a cDNA library in the Okayama-Berg vector with a rat liver cDNA and was subjected to nucleotide sequence analysis. The deduced human heme oxygenase is also composed of 288 amino acids with a molecular mass of 32,800 Da. Following hemin treatment of human leukemic cell line K562 there was an increase in the amount of heme oxygenase protein and mRNA.

Keywords

HepG2 Cell Liver Microsome Heme Oxygenase Sodium Cholate Human Leukemic Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmid, R. 1977. Trans. Assoc. Amer. Physicians 89: 64–76.Google Scholar
  2. 2.
    Yoshinaga, T., S. Sassa, and A. Kappas. 1982. J. Biol. Chem. 257: 7786–7793.PubMedGoogle Scholar
  3. 3.
    Maines, M.D., N.G. Abraham, and A. Kappas. 1977. J. Biol. Chem. 252: 5900–5903.PubMedGoogle Scholar
  4. 4.
    Doche»ty, J., B.A. Schacter, G.D. Firneisz, and S.B. Brown. 1984. J. Biol. Chem. 259: 13066–13069.Google Scholar
  5. 5.
    Yoshinaga, T., S. Sassa, and A. Kappas. 1982. J. Biol. Chem. 258: 7778–7785.Google Scholar
  6. 6.
    Schacter, B.A., E.B. Nelson, H.S. Marver and B.S.S. Masters. 1972. J. Biol. Chem. 247: 3601–3607.PubMedGoogle Scholar
  7. 7.
    Yoshida, T., M. Noguchi, G. Kikuchi. 1980. J. Biol. Chem. 255: 4418–4420.PubMedGoogle Scholar
  8. 8.
    Abraham, N.G., and R.D. Levere. 1980. Life Science 21: 4487–4491.Google Scholar
  9. 9.
    Pimstone, N.R., P. Engel, R. Tenhunen, P.T. Seitz, H.S. Marver, and R. Schmid. 1971. J. Clin. Inv. 50: 2042–2050.CrossRefGoogle Scholar
  10. 10.
    Maines, M.D., and A. Kappas. 1977. Science 198: 1215–1221.PubMedCrossRefGoogle Scholar
  11. 11.
    Guzelian, P.S. and N.A. Elshourbagy. 1979. Arch. Biochem. Biophys. 196: 178–185.PubMedCrossRefGoogle Scholar
  12. 12.
    Abraham, N.G., J.D. Lutton, M.L. Freedman, and R.D. Levere. 1986. Am. J. Med. Sci. 29: 81–86.CrossRefGoogle Scholar
  13. 13.
    Kappas, A. and G.S. Drummond. 1986. J. Clin. Invest. 77: 335–339.PubMedCrossRefGoogle Scholar
  14. 14.
    Sardana, M.K., S. Sassa, and A. Kappas. 1980. J. Biol. Chem. 255: 11320–11323,Google Scholar
  15. 15.
    Sardana, M.K., S. Sassa, and A. Kappas. 1985. Biochem. Pharmacol. 34: 2937–2955.PubMedCrossRefGoogle Scholar
  16. 16.
    Smith, T.J., G.S. Drummond, I.A. Kourides, and A. Kappas. 1982. Proc. Nat. Acad. Sci. 79: 7537–7541.PubMedCrossRefGoogle Scholar
  17. 17.
    Bakken, A.F., M.M. Thaler, and R. Schmid. 1972. J. Clin. Invest. 51: 530–536.PubMedCrossRefGoogle Scholar
  18. 18.
    Abraham, N.G., J.D. Lutton, R. Hoffman, and R.D. Levere. 1985. J. Lab. Clin. Med. 105: 593–600.Google Scholar
  19. 19.
    Schacter, B.A., B. Yoda, and L.G. Israels. 1979. J. Lab. Clin. Med. 93: 838–846.PubMedGoogle Scholar
  20. 20.
    Porter, P.N., R.H. Meints, and K. Mesner. 1979. Exp. Hematol. 7: 11–16.PubMedGoogle Scholar
  21. 21.
    Ross, J. and D. Sautner. 1976. Cell 8: 513–520.PubMedCrossRefGoogle Scholar
  22. 22.
    Hoffman, R., M.J. Murnane, D. Burger, et al. 1981. In: Stamatogannopoulas G., Nienhuis, A.W., Eds., Hemoglobins in development and differentiation. Alan R. Liss, New York, pp. 487–506.Google Scholar
  23. 23.
    Sassa, S. 1980. In vivo and in vitro erythropoiesis: The friend system, G.B. Rossi, Ed., Elsevier/North Holland, Amsterdam, pp. 219–228.Google Scholar
  24. 24.
    Bern, N., K. Sahr, and E. Goldwasser. 1983. J. Cell Biochem. 21: 93–99.CrossRefGoogle Scholar
  25. 25.
    Abraham, N.G., J.H. Lin, M.W. Dunn, and M.L. Schwartzman. 1987. Invest. Ophthalmol. Vis. Sci.Google Scholar
  26. 26.
    Towbin, H., T. Strachlin, and J. Gordon. 1979. Proc. Natl. Acad. Sci. 76: 4350–4354.PubMedCrossRefGoogle Scholar
  27. 27.
    Schwartzman, M.L., P. Pagano, J.C. McGiff, and N.G. Abraham. 1986. Arch. Biochem. Biophys. 252: 635–645.CrossRefGoogle Scholar
  28. 28.
    Yashukochi, Y., and B.S.S. Masters. 1976. J. Biol. Chem. 251: 5337–5344.Google Scholar
  29. 29.
    Kutty, R.K. and M.D. Maines. 1981. J. Biol. Chem. 256: 3956–3962.PubMedGoogle Scholar
  30. 30.
    Watt, J. and P. O’Carra. 1976. Biochem. Soc. Trans. 4: 866–868.PubMedGoogle Scholar
  31. 31.
    Rutherford, T.R., J.B. Clegg, and D. J. Weatherall. 1979. Nature 208: 164–165.CrossRefGoogle Scholar
  32. 32.
    Knowles, B.B., C.C. Howe, and D.P. Aden. 1980. Science 209: 497–499.PubMedCrossRefGoogle Scholar
  33. 33.
    Galbraith, R.A., S. Sassa, and A. Kappas. 1986. Biochem. J. 237: 597–600.PubMedGoogle Scholar
  34. 34.
    Chirgwin, J.M., A.E. Przybyla, R.J. MacDonald, and W.J. Rutter. 1979. Biochem. 18: 5290–5299.Google Scholar
  35. 35.
    Shibahara, S., R.M. Muller, H. Taguchi, and T. Yoshida. 1985. Proc. Natl. Acad. Sci. USA. 82: 7865–7869.PubMedCrossRefGoogle Scholar
  36. 36.
    Yoshida, T., P. Biro, T. Cohen, R.M. Muller, and S. Shibahara. 1988. Eur. J. Biochem., In Press.Google Scholar
  37. 37.
    Feinberg, A.P. and B. Vogelstein. 1983. Anal. Biochem. 132: 6–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Aviv, H., and P. Leda. 1972. Proc. Natl. Acad. Sci. USA. 69: 1408–1412.PubMedCrossRefGoogle Scholar
  39. 39.
    Okayama, H. and P. Berg. 1982. Mol. Cell. Biol. 2: 161–170.PubMedGoogle Scholar
  40. 40.
    Maxam, A.M. and W. Gilbert. 1980. Methods Enzymol. 65: 499–560.PubMedCrossRefGoogle Scholar
  41. 41.
    Yoshida, T. and G. Kikuchi. 1979. J. Biol.Chem. 254: 4487–4491.PubMedGoogle Scholar
  42. 42.
    Kozak, M. 1981. Nucleic Acid Res. 9: 5233–5252.PubMedCrossRefGoogle Scholar
  43. 43.
    Young, R.A., and R.W. Davis. 1983. Proc.Nat1.Acad.Sci. 80: 1194–1198.CrossRefGoogle Scholar
  44. 44.
    Young, R.A. and R.W. Davis. 1983. Science 222: 778–782,PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Nader G. Abraham
    • 1
  • Steve M. Mitrione
    • 1
  • W. John
    • 1
  • B. Hodgson
    • 1
  • Richard D. Levere
    • 1
  • Shigeki Shibahara
    • 2
  1. 1.Department of MedicineNew York Medical CollegeValhallaUSA
  2. 2.Department of Applied PhysiologyTohoku University School of MedicineSendei, Miy agiJapan

Personalised recommendations