Advertisement

Serum Antioxidant Activity as a Determinant of Pulmonary Dysfunction in Cigarette Smokers

  • Raymond B. Bridges
  • Stanley R. Rehm
Part of the Basic Life Sciences book series (BLSC, volume 49)

Abstract

Cigarette smoking is a significant risk factor for the development of chronic obstructive pulmonary disease (COPD), and the primary etiology of COPD in smokers is presumably a pulmonary protease-antiprotease imbalance.1 Oxidants in cigarette smoke2,3 and those generated by activated phagocytes4 have both been shown to inactivate the pulmonary antiproteases. This cross-sectional study examined the effects of smoking on total serum antioxidant activity (AOA), the components of peripheral blood which contributed to this AOA, and the relationships between AOA and smoking history or pulmonary dysfunction.

Keywords

Chronic Obstructive Pulmonary Disease Smoking History Serum Iron Pulmonary Dysfunction Human Neutrophil Elastase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Janoff, State of the Art: Elastases and emphysema. Current assessment of the protease-antiprotease hypothesis, Am. Rev. Respir. Pis. 132:417 (1985).Google Scholar
  2. 2.
    W.A. Pryor, M.M. Pooley, and D.F. Church, Inactivation of human alpha-1-proteinase inhibitor by gas-phase cigarette smoke, Biochem. Biophys. Res. Commun. 122:676 (1984).CrossRefGoogle Scholar
  3. 3.
    K. Ohlsson, U. Fryksmark, and H. Tegner, The effect of cigarette smoke condensate on α1-antitrypsin, antileukoprotease and granulocyte elastase, Eur. J. Clin. Invest. 10:373 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    M.C. Zaslow, R.A. Clark, P.J. Stone, J.D. Calore, G.L. Snider, and C. Franzblau, Human neutrophil elastase does not bind to alpha-1-protease inhibitor that has been exposed to activated human neutrophils, Am. Rev. Respir. Dis. 128:434 (1983).PubMedGoogle Scholar
  5. 5.
    R.B. Bridges, R.J. Wyatt, and S.R. Rehm, Effects of smoking on inflammatory mediators and their relationship to pulmonary dysfunction, Eur. J. Respir. Pis. 69 (suppl 146):145 (1986).Google Scholar
  6. 6.
    P.L. Wolf, Ceruloplasmin: Methods and clinical use, CRC Critical Rev. Clin. Lab. Sci. 17:229 (1982).CrossRefGoogle Scholar
  7. 7.
    J. Stocks, J.M.C. Gutteridge, R.J. Sharp, and T.L. Pormandy, Assay using brain homogenate for measuring the antioxidant activity of biological fluids, Clin. Sci. Mol. Med. 47:215 (1974).PubMedGoogle Scholar
  8. 8.
    G.J. Beck, C.A. Boyle, and E.N. Schachter, Smoking and lung function, Am. Rev. Respir. Pis. 123:149 (1981).Google Scholar
  9. 9.
    J. Taylor, and L. Oey, Ceruloplasmin: plasma inhibitor of the oxidative inactivation of alphas-protease inhibitor, Am. Rev. Respir. Pis. 126:476 (1982).Google Scholar
  10. 10.
    E.R. Pacht, and W.B. Pavis, Transferrin: an important antioxidant protein in alveolar epithelial lining fluid, Am. Rev. Respir. Pis. 135: A265 (1987).Google Scholar
  11. 11.
    M. Galdston, J.G. Feldman, V. Levytska, and B. Magnusson, Antioxidant activity of serum ceruloplasmin and transferrin available iron-binding capacity in smokers and nonsmokers, Am. Rev. Respir. Pis. 135:783 (1987).Google Scholar
  12. 12.
    C.A. Pinarello, Interleukin-1, Rev. Infect. Pis. 6:51 (1984).CrossRefGoogle Scholar
  13. 13.
    E.A. Rich, P.J. Tweardy, H. Fujiwara, and J.J. Ellner, Spectrum of immunoregulatory functions and properties of human alveolar macrophages, Am. Rev. Respir. Pis. 136:258 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Raymond B. Bridges
    • 1
  • Stanley R. Rehm
    • 1
  1. 1.Departments of Oral Biology and MedicineUniversity of Kentucky and VA Medical CentersLexingtonUSA

Personalised recommendations