Radioprotection of Mice with Ascorbic Acid, Desferal and Mercaptoethylamine

  • Ajit Singh
  • Harwant Singh
  • James S. Henderson
  • Robert D. Migliore
  • Jacques Rousseau
  • Johan E. Van Lier
Part of the Basic Life Sciences book series (BLSC, volume 49)


Radiation damage in biological systems is initiated by the ionic, excited and free radical species formed during the energy deposition events. It progresses with time through a variety of mechanisms.1 Because of the variety of these mechanisms, any single radioprotective agent can be only partially effective. Simultaneous use of several radioprotective agents is warranted.1


Chinese Hamster Ovary Cell Radiation Protection Chemical Protection Free Radical Species Radioprotective Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Singh and H. Singh, Time-scale and nature of radiation-biological damage: Approaches to radiation protection and post-irradiation therapy, Prog. Biophys. Molec. Biol. 39:69 (1982).CrossRefGoogle Scholar
  2. 2.
    M. Naslund, L. Ehrenberg, and G. Djalali-Behzad, Antagonism of Ascorbate against the radioprotective action of cysteamine, Int. J. Radiat. Biol. 30:95 (1976).CrossRefGoogle Scholar
  3. 3.
    M.K. O’Connor, J.F. Malone, M. Moriarty, and S. Mulgrew, A radioprotective effect of vitamin C observed in Chinese hamster ovary cells, Brit. J. Radiol. 50:587 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    L. Ala-Ketola, R. Varis, and K. Kiviniitty, Effect of ascorbic acid on the survival of rats after whole body irradiation, Strahlentherapie 148:643 (1974).PubMedGoogle Scholar
  5. 5.
    J. Forsberg, M. Harms-Ringdahl, and L. Ehrenberg, Interaction of ascorbate with the radioprotective effect of mercaptoethylamin. An exploratory study in mice, whole animals and cell cultures, Int. J. Radiat. Biol. 34:245 (1978).CrossRefGoogle Scholar
  6. 6.
    H.H. Tewfik, F.A. Tewfik, and E.F. Riley, The Influence of ascorbic acid on survivial of mice following whole body X-irradiation, in: “Vitamin C: New Clinical Applications in Immunology, Lipid Metabolism and Cancer,” A. Hanck, ed., Huber Publishers, Bern (1982)Google Scholar
  7. 7.
    J.R. Maisin, G. Mattelin, and M. Larabiet-Collier, Chemical protection against the long-term effects of a single whole-body exposure of mice to ionizing radiation. I. Life shortening, Radiat. Res. 71:119 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    W.F. Ward, A. Shih-Hoellwarth, and P.M. Johnson, Survival of Penicillamine-treated mice following whole-body irradiation, Radiat. Res., 81:131 (1980).PubMedCrossRefGoogle Scholar
  9. 9.
    J.M.C. Gutteridge, R. Richmond, and B. Halliwell, Inhibition of the iron-catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine, Biochem. J. 184:469 (1979).PubMedGoogle Scholar
  10. 10.
    J.S. Henderson and J.L. Weeks, A study of the carcinogenicity for skin of a polyphenyl coolant, Ind. Med. Surg. 42(2):10 (1973).Google Scholar
  11. 11.
    J.B. Storer, Chemical protection of the mouse against radiationinduced life shortening, Radiat. Res. 47:537 (1971).PubMedCrossRefGoogle Scholar
  12. 12.
    T.L. Dormandy, Free-radical oxidation and anti-oxidants, Lancet 1:647 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    S.D. Aust, L.A. Morehouse and C.E. Thomas, Role of metals in oxygen radical reactions, J. Free Rad. Biol. Med. 1:3 (1985)CrossRefGoogle Scholar
  14. 14.
    B.H.J. Bielski, Chemistry of ascorbic acid radicals, in: “Ascorbic Acid: Chemistry, Metabolism, and Uses,” P.A. Seib and B.M. Tolbert, eds., Adv. Chem. Ser., 200, American Chemical Society, Washington, D.C. (1982).Google Scholar
  15. 15.
    R.L. Willson, Free radical mechanisms and the interactions of glutathione and vitamins C and E, in: “Radioprotectors and Anticarcinogens,” O.F. Nygaard and M.G. Simic, eds., Academic Press, New York (1983).Google Scholar
  16. 16.
    G. Capozzi and G. Modena, Oxidation of thiols, in: “The Chemistry of the Thiol Group,” Part 2, S. Patai, Ed., John Wiley and Sons, London (1974).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Ajit Singh
    • 1
  • Harwant Singh
    • 1
  • James S. Henderson
    • 2
  • Robert D. Migliore
    • 2
  • Jacques Rousseau
    • 3
  • Johan E. Van Lier
    • 3
  1. 1.Radiation Applications Research Branch, Whiteshell Nuclear Research EstablishmentAtomic Energy of Canada Limited Research CompanyPinawaCanada
  2. 2.Pathology Department, Faculty of MedicineUniversity of ManitobaWinnipegCanada
  3. 3.Department of Nuclear Medicine and Radiobiology, M.R.C. Group on Radiation Sciences, Faculté de médecine, Centre hospitalier, universitaire de SherbrookeUniversité de SherbrokeSherbrookeCanada

Personalised recommendations