Advertisement

Aspects of the HO2· Elimination Reaction from Organic Peroxyl Radicals: Some Recent Examples

  • S. Das
  • O. J. Mieden
  • X.-M. Pan
  • M. Repas
  • M. N. Schuchmann
  • H.-P. Schuchraann
  • C. von Sonntag
  • H. Zegota
Part of the Basic Life Sciences book series (BLSC, volume 49)

Abstract

It is known that in aqueous solution some organic radicals upon reaction with oxygen form HO 2 · /·O 2 - without a detectable peroxyl radical intermediate. Cases in point are the radicals derived from formate1, formaldehyde hydrate2 and glucose (at C(l)).3 Many other radicals carrying OH or NH functions in α-position to the radical site form peroxyl radicals whose rate of spontaneous HO2 elimination can be measured. Among these are the peroxyl radicals derived from alcohols, carbohydrates (for a review see reference 4) and amino acids.5 However, in some cases this elimination reaction is very slow and HO 2 · is practically only eliminated in a base-catalysed reaction. In this case a peroxyl radical anion is a likely intermediate which subsequently loses ·O2 Examples are the peroxyl radicals derived from pyrimidines.6 In continuation of these studies we have been looking at the OH radical-induced oxidation of trimethylamine, acetaldehyde dimethylacetal, glycine anhydride and benzene. Peroxyl radicals derived from these substrates were generated radiolytically as described in the preceding paper by C. von Sonntag.

Keywords

Peroxyl Radical Peroxy Radical Pulse Radiolysis Elimination Reaction Methyl Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. J. Hart, Mechanism of the γ-ray-induced chain oxidation of aqueous ferrous sulfate-formic acid-oxygen solutions, J. Am. Chem. Soc. 74:4174 (1952).CrossRefGoogle Scholar
  2. 2.
    E. Bothe and D. Schulte-Frohlinde, Reaction of dihydroxy- methylradical with molecular oxygen in aqueous solutions, Z. Naturforsch. 35b:1035 (1980).Google Scholar
  3. 3.
    E. Bothe, D. Schulte-Frohlinde, and C. von Sonntag, Kinetics of HCL elimination from peroxyl radicals derived from glucose and polyhydric alcohols, J. Chem. Soc. Perkin Trans. LI 416 (1978).Google Scholar
  4. 4.
    E. Bothe, M. N. Schuchmann, D. Schulte-Frohlinde, and C. von Sonntag, HO2 elimination from α-hydroxyalkylperoxyl radicals in aqueous solution, Photochem. Photobiol. 28:639 (1978).CrossRefGoogle Scholar
  5. 5.
    S. Abramovitch and J. Rabani, Pulse radiolytic investigations of peroxy radicals in aqueous solutions of acetate and glycine, J. Phys. Chem. 80:1562 (1976).CrossRefGoogle Scholar
  6. 6.
    M. I. Al-Sheikhly, A. Hissung, H.-P. Schuchmann, M. N. Schuchmann, C. von Sonntag, A. Garner, and G. Scholes, Radiolysis of dihydrouracil and dihydrothymine in aqueous solutions containing oxygen; first- and second-order reactions of organic peroxyl radicals; the role of isopyrimidines as intermediates, CL Chem. Soc. Perkin Trans, II 601 (1984).CrossRefGoogle Scholar
  7. 7.
    J. Rabani, W. A. Mulac, and M. S. Matheson, The pulse radiolysis of aqueous tetranitromethane. I. Rate constants and the extinction coefficient of e- aq. II. Oxygenated solutions, J. Phys. Chem. 69:53 (1965).CrossRefGoogle Scholar
  8. 8.
    B. H. J. Bielski, D. E. Cabelli, R. L. Arudi, and A. B. Ross, Reactivity of HO2/O2 - radicals in aqueous solution, J. Phys. Chem. Ref. Data 14:1041 (1985).CrossRefGoogle Scholar
  9. 9.
    S. Das and C. von Sonntag, Oxidation of trimethylamine by OH radicals in aqueous solution, as studied by pulse radiolysis, ESR and product analysis. The reactions of the alkylamine radical cation, the aminoalkyl radical and the protonated aminoalkyl radical, Z. Naturforsch. 41b:505 (1986).Google Scholar
  10. 10.
    S. Das, M. N. Schuchmann, H.-P. Schuchmann, and C. von Sonntag, The production of the superoxide radical anion by the OH radical-induced oxidation of trimethylamine in oxygenated aqueous solution. The kinetics of the hydrolysis of (hydroxymethyl)dimethylamine, Chem. Ber. 120:319 (1987).CrossRefGoogle Scholar
  11. 11.
    J. Eibenberger, D. Schulte-Frohlinde, and S. Steenken, One-electron oxidation of α-monoalkoxyalkyl radicals by tetranitromethane via an intermediate adduct. Influence of radical structure on rate of decomposition of the adduct, J. Phys. Chem. 84:704 (1980).CrossRefGoogle Scholar
  12. 12.
    M. N. Schuchmann and C. von Sonntag, Hydroxyl radical induced oxidation of diethyl ether in oxygenated aqueous solution. A product and pulse radiolysis study, J. Phys. Chem. 86:1995 (1982).CrossRefGoogle Scholar
  13. 13.
    M. N. Schuchmann and C. von Sonntag, Hydroxyl radical-induced oxidation of diisopropyl ether in oxygenated aqueous solution. A product and pulse radiolysis study, Z. Naturforsch. 42b:495 (1987).Google Scholar
  14. 14.
    E. Hayon and M. Simic, Acid-base properties of organic peroxy radicals, OORH, in aqueous solution, J. Am. Chem. Soc. 95:6681 (1973).CrossRefGoogle Scholar
  15. 15.
    L. M. Dorfman, I. A. Taub, and R. E. Bühler, Pulse radiolysis studies. I. Transient spectra and reaction-rate constants in irradiated aqueous solutions of benzene, J. Chem. Phys. 36:3051 (1962).CrossRefGoogle Scholar
  16. 16.
    C. von Sonntag, “The Chemical Basis of Radiation Biology”, Taylor and Francis, London (1987).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • S. Das
    • 1
  • O. J. Mieden
    • 1
  • X.-M. Pan
    • 1
  • M. Repas
    • 1
  • M. N. Schuchmann
    • 1
  • H.-P. Schuchraann
    • 1
  • C. von Sonntag
    • 1
  • H. Zegota
    • 1
  1. 1.Max-Planck-Institut für StrahlenchemieMülheim/RuhrW. Germany

Personalised recommendations