The Generation of Radicals during the Normal and Abnormal Functioning of Cytochromes P-450

  • David Dolphin
Part of the Basic Life Sciences book series (BLSC, volume 49)


Oxygen exhibits very rich redox chemistry and, as shown in Scheme 1, hemes and hemeproteins play major roles in both the production of and protection from a variety of oxygen and other free radicals. In addition catalase destroys, at a diffusion-controlled rate, hydrogen peroxide by a two-electron process which does not generate hydroxyl radicals. On the other hand hydrogen peroxide, along with a wide variety of transition metal ions, is the principal source of in vivo hydroxyl radicals.


Cation Radical Veratryl Alcohol Iron Porphyrin Peroxy Acid Ferric Heme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Dolphin and R.H. Felton, The biochemical significance of porphyrin cation radicals, Ace. Chem. Res., 7:26 (1974).CrossRefGoogle Scholar
  2. 2.
    D. Dolphin, Z. Muljiani, K. Rousseau, D.C. Borg, J. Fajer, and R.H. Felton, The Chemistry of Porphyrin 7r-Cations, Ann. NY Acad. Sci., 206:177 (1973).PubMedCrossRefGoogle Scholar
  3. 3.
    W.D. Hewson and L.P. Hager, “Peroxidases, Catalases and Chloroperoxidase” in: “The Porphyrins,” D. Dolphin, ed., Academic Press, New York, Vol. VII, pp. 295–332 (1979).CrossRefGoogle Scholar
  4. 4.
    P.R. Ortiz de Montellano, Ed., “Cytochrome P-450,” Plenum Press, New York, (1986).Google Scholar
  5. 5.
    J.A. Pederson and R.A. Prough, “Cytochrome P-450 Reductase and Cytochrome be in Cytochrome P-450 Catalysis” in: “Cytochrome P-450,” P.R. Ortiz de Montellano, Ed., Plenum Press, New York, pp. 89–117 (1986).Google Scholar
  6. 6.
    D. Mansuy, “Cytochrome P-450 and synthetic models”, Pure and Appl. Chem., 59:759 (1987).CrossRefGoogle Scholar
  7. 7.
    J.-I. Setsune and D. Dolphin, Organometallic aspects of cytochrome P-450 metabolism, Can. J. Chem., 67:459 (1987).CrossRefGoogle Scholar
  8. 8.
    T.L. Poulos, “The Crystal Structure of Cytochrome P-450cam”, in: “Cytochrome P-450,” P.R. Ortiz de Montellano, Ed., Plenum Press, New York, pp. 505–523 (1986).Google Scholar
  9. 9.
    P.R. Ortiz de Montellano, “Oxygen Activation and Transfer”, in: “Cytochrome P-450,” P.R. Ortiz de Montellano, Ed., Plenum Press, New York, pp. 217–271 (1986).Google Scholar
  10. 10.
    T. Eling, J. Curtis, J. Battista, and L.J. Marnett, Oxidation of (+)-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by mouse keratinocyates: evidence for peroxyl radical- and monooxygenase-dependent metabolism, Carcinogenesis (London), 7:1957 (1986).CrossRefGoogle Scholar
  11. 11.
    G.C. Wagner, M.M. Palcic, H.B. Dunford, Absorption spectra of cytochrome P-450cam in the reaction with peroxy acids, F.E.B.S. Lett., 156:244 (1983).CrossRefGoogle Scholar
  12. 12.
    J.T. Groves, R.C. Haushatter, M. Nakamura, T.E. Nemo, and B.J. Evans, High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450, J. Am. Chem. Soc., 103:2884 (1981).CrossRefGoogle Scholar
  13. 13.
    J.T. Groves, G.A. McClusky, R.E. White, and M.J. Coon, Aliphatic hydroxylation by highly purified liver microsomal cytochrome P-450: Evidence for a carbon radical intermediate, Biochem. Biophvs. Res. Commun.. 81:154 (1978).CrossRefGoogle Scholar
  14. 14.
    J.E. Penner-Hahn, K. Smith Eble, T.J. McMurray, M. Renner, A.L. Balch, J.T. Groves, J.H. Dawson, K.O. Hodgson, Structural characterization of horseradish peroxidase using EXAFS spectroscopy. Evidence for Fe=0 ligation in compounds I and II, J. Am. Chem. Soc. 108:7819 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    J.T. Groves and G.A. McClusky, Aliphatic hydroxylation via oxygen rebound oxygen transfer catalyzed by iron, J. Am. Chem. Soc., 98:859 (1976).CrossRefGoogle Scholar
  16. 16.
    D. Dolphin, A.W. Addison, M. Cairns, R.K. DiNello, N.P. Farrell, B.R. James, D.R. Paulson, and C. Welborn, Heme proteins and metalloporphyrins: redox chemistry and oxygen binding, Int. J. Quantum Chem., 16:311 (1979).CrossRefGoogle Scholar
  17. 17.
    P.S. Traylor, D. Dolphin, and T.G. Traylor, Sterically protected hemins with electronegative substituents: efficient catalysts for hydroxylation and epoxidation, J. Chem. Soc. Chem. Commun., 279 (1984).Google Scholar
  18. 18.
    T. Mashiko, D. Dolphin, T. Nakano, and T.G. Traylor, N-Alkyl-porphyrin formation during the reactions of cytochrome P-450 model systems, J. Am. Chem. Soc., 107:3735 (1985).CrossRefGoogle Scholar
  19. 19.
    T.G. Traylor, T. Nakano, B.E. Danlap, P.S. Traylor, and D. Dolphin, Mechanism of hemin-catalyzed alkene epoxidation. The effect of catalyst on the regiochemistry of epoxidation, J. Am. Chem. Soc., 108:2782 (1986).CrossRefGoogle Scholar
  20. 20.
    S.K. Glenn, M.A. Morgan, M.B. Mayfield, M. Kuwahara, and M.H. Gold, An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium, Biochem. Biophys. Res. Commun., 114:1077 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Tien and T.K. Kirk, Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium burds, Science. 221:601 (1983).CrossRefGoogle Scholar
  22. 22.
    D. Dolphin, T. Nakano, T.E. Maione, T.K. Kirk, and R. Farrell, “Synthetic Model Ligninases,” in “Lignin enzymic and microbial degradation,” Ed. E. Odier, INRA Publications, Paris, pp. 157–162 (1987).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • David Dolphin
    • 1
  1. 1.Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations