Oxygen Radicals, Lipid Peroxidation and DNA Damage in Mitochondria

  • Andrew M. Hruszkewycz
  • David S. Bergtold
Part of the Basic Life Sciences book series (BLSC, volume 49)


Oxygen activation in eukaryotic cells occurs mainly within mitochondria, where the respiratory electron transport chain metabolizes approximately 90% of cellular oxygen. While mitochondrial oxygen metabolism supplies the cell with most of its ATP, it also results in the production of hazardous oxygen radicals.1,2 Oxygen radical production has been estimated to account for approximately 1 to 2% of mitochondrial oxygen consumption.3 Although the mitochondrion is protected by an elaborate system of antioxidants and scavengers,2,4 free radicals may escape their surveillance and cause damage to mitochondrial components. The close spatial relationship between the site of mitochondrial oxygen activation, the peroxidizable lipids of the Inner membrane, and mitochondrial DNA (mtDNA) suggests that oxygen radicals and lipid peroxidation may cause mutation of the mitochondrial genome. The condition of mitochondrial DNA structure is of fundamental importance because this genome encodes key enzymes of the respiratory chain.5 In view of growing evidence indicating that abnormalities of mtDNA may contribute to the etiology of aging6 and a number of diseases, including cancer,7,8 the relationship of mitochondrial oxygen radical production and mtDNA integrity merits further consideration.


Lipid Peroxidation Alkoxyl Radical Mitochondrial Oxygen Consumption Linoleic Acid Hydroperoxide Hydroperoxy Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Nohl, Oxygen radical release in mitochondria: Influence of age,in: “Free Radicals, Aging, and Degenerative Diseases,” J.E. Johnson Jr., R. Walford, D. Harman, and J. Miquel, eds., Alan R. Liss, New York (1986).Google Scholar
  2. 2.
    B. Chance, H. Sies, and A. Boveris, Hydroperoxide metabolism in mammalian organs, Physiol. Rev. 59:617 (1979).Google Scholar
  3. 3.
    H.J. Forman and A. Boveris, Superoxide radical and hydrogen peroxide in mitochondria, in: “Free Radicals in Biology,” vol. V, W.A. Pryor, ed., Academic Press, New York (1982).Google Scholar
  4. 4.
    I. Fridovich, Superoxide dismutase, Ann. Rev. Biochem. 44:147 (1975).PubMedCrossRefGoogle Scholar
  5. 5.
    R.W. Yatscoff, S. Goldskin, and K.B. Freedman, Conservation of genes coding for proteins synthesized in human mitochondria, Somatic Cell Genet. 4:633 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    J. Miguel and J. Fleming, Theoretical and experimental support for an “oxygen radical-mitochondrial injury,” hypothesis of cell aging, in: “Free Radicals, Aging, and Degenerative Diseases,” J.E. Johnson Jr., R. Walford, D. Harman, and J. Miguel, eds., Alan R. Liss, New York (1986).Google Scholar
  7. 7.
    J.W. Shay and H. Werbin, Are mitochondrial DNA mutations involved in the carcinogenic process? Mutat. Res. 186:149 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    C.R. Merril and M.G. Harrington, The search for mitochondrial inheritance of human diseases, Trends in Genetics 1:140 (1985).CrossRefGoogle Scholar
  9. 9.
    G. Loschen, L. Flohe, and B. Chance, Respiratory chain linked H2O2 production in pigeon heart mitochondria, FEBS Lett. 18:261 (1971).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Boveris, N. Oshino, and B. Chance, The cellular production of hydrogen peroxide, Biochem. J. 128:617 (1972).PubMedGoogle Scholar
  11. 11.
    H. Nohl and D. Hegner, Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82:563 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    G. Loschen, A. Azzi, and L. Flohe, Mitochondrial H2O2 formation at site II, Hoppe-Sevlers Z. Physiol. Chem. 354:791 (1973).CrossRefGoogle Scholar
  13. 13.
    G. Loschen, A. Azzi, and L. Flohe, Mitochondrial hydrogen peroxide formations, in: “Alcohol and Aldehyde Metabolizing Systems,” R.G. Thurman, T. Yonetani, J.R. Williamson, and B. Chance, eds., Academic Press, New York (1974).Google Scholar
  14. 14.
    G. Loschen, A. Azzi, and L. Flohe, Mitochondrial H202 formation: Relationship with energy conservation, FEBS Lett. 33:84 (1973).PubMedCrossRefGoogle Scholar
  15. 15.
    E. Cadenas, A. Boveris, C.I. Ragan, and A.O.M. Stopani, Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome C reductase from beef heart mitochondria, Arch. Biochem. Biophvs. 180:248 (1977).CrossRefGoogle Scholar
  16. 16.
    H.J. Forman, The role of ubisemiquinone in superoxide production by dihydroorotate dehydrogenase: A proposed mechanism, in: “The Significance of Superoxide and Superoxide Dismutase,” vol. I, J.V. Bannister and H.A.O. Hill, eds., Elsevier, Amsterdam (1980).Google Scholar
  17. 17.
    D.D. Tyler, Polarographic assay and intracellular distribution of superoxide dismutase in rat liver, Biochem. J. 147:793 (1975).Google Scholar
  18. 18.
    M.G. Simic and K.A. Taylor, Free radical mechanisms of oxidation reactions, in: “Flavor Quality of Fresh Meat: Warmed-Over Flavor,” A.J. St. Angelo and M.E. Bailey, eds., Academic Press, New York (1987).Google Scholar
  19. 19.
    A. Naqai and B. Chance, Reactive oxygen intermediates in biochemistry, Annu. Rev. Biochem. 55:137 (1986).CrossRefGoogle Scholar
  20. 20.
    A. Singh, Interconversion of singlet oxygen and related species,Photochem. Photobio. 28:429 (1978).CrossRefGoogle Scholar
  21. 21.
    L.K. Dahle, E.G. Hill, and R.T. Holman, The thiobarbituric acid reaction and the autoxidation of polyunsaturated fatty acid methyl esters, Arch. Biochem. Biophvs. 98:253 (1962).CrossRefGoogle Scholar
  22. 22.
    I. Fridovich, Superoxide radical: an endogenous toxicant, Annu. Rev. Pharmacol. Toxicol. 23:239 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    K.L. Fong, P.B. McCary, J.L. Poyer, H.P. Misra, and B.B. Keele, Evidence for superoxide-dependent reduction of Fe3+ and its role in enzyme-generated hydroxy1 radical formation, Chem. Biol. Interact. 15:77 (1976).PubMedCrossRefGoogle Scholar
  24. 24.
    S.D. Aust, L.A. Morehouse, and CE. Thomas, Role of metals in oxygen radical reactions, J. Free Rad. Biol. Med. 1:3 (1985).CrossRefGoogle Scholar
  25. 25.
    B.H.J. Bielski, R.L. Arudi, and M.W. Sutherland, A study of the reactivity of HO2/O2 - with unsaturated fatty acids, J. Biol. Chem. 258:4759 (1983).PubMedGoogle Scholar
  26. 26.
    C. von Sonntag, “The Chemical Basis of Radiation Biology,” Taylor and Francis, London (1987).Google Scholar
  27. 27.
    D.C. Harris and P. Aisen, Facilitation of Fe(II) autoxidation by Fe(III) complexing agents, Biochim. Biophvs. Acta 329:156 (1973).CrossRefGoogle Scholar
  28. 28.
    G. Schwarzenbach and J. Heller, Komplexone XVIII, Die eisen(II)-und eisen(III)-komplexe des achylenediamintetraessigsaure und ihr redoxgleichgewich, Helv. Chim. Acta 34:576 (1951).CrossRefGoogle Scholar
  29. 29.
    H. Esterbauer, Aldehydic Products of Lipid Peroxidation, in: “Free Radicals, Lipid Peroxidation and Cancer,” D.C.H. McBrien and T.F. Slater, eds., Academic Press, New York (1982).Google Scholar
  30. 30.
    A.M. Hruszkewycz, E.A. Glende, Jr., and R.O. Recknagel, Destruction of microsomal cytochrome P-450 and glucose-6-phosphatase by lipids extracted from peroxidized microsomes, Toxicol. Appl. Pharmacol. 46:695 (1978).PubMedCrossRefGoogle Scholar
  31. 31.
    R.G. Hansford, Bioenergetics in aging, Biochim. Biophys. Acta 726:41 (1983).PubMedCrossRefGoogle Scholar
  32. 32.
    R.B. Bacon, C.H. Park, G.M. Brittenham, R. O’Neill, and A.S. Tavill, Hepatic mitochondrial oxidative metabolism in rats with chronic dietary iron overload, Hepatology 5:789 (1985).PubMedCrossRefGoogle Scholar
  33. 33.
    Y.A. Vlademirov, V.I. Olenev, T.B. Suslova, and A.P. Chevemisina, Lipid peroxidation in mitochondria membrane, Adv. Lipid Res. 17:173 (1980).Google Scholar
  34. 34.
    R.O. Recknagel and A.K. Ghoshal, Quantitative estimation of peroxidative degeneration of rat liver microsomal and mitochondrial lipids after carbon tetrachloride poisoning, Exp. Mol. Pathol. 5:413 (1966).PubMedCrossRefGoogle Scholar
  35. 35.
    R. Ogura, Adriamyein-induced lipid peroxidation and its protection,in: “Lipid Peroxides in Biology and Medicine,” K. Yagi, ed., Academic Press, London (1982).Google Scholar
  36. 36.
    D.A. Clayton, Replication of animal mitochondrial DNA, Cell 28:693 (1982).PubMedCrossRefGoogle Scholar
  37. 37.
    I. Salazar, L. Tarrago-Litvak, L. Gil, and S. Litvak, The effect of benzo(a)pyrene on DNA synthesis and DNA polymerase activity of rat liver mitochondria, FEBS Lett. 138:45 (1982).PubMedCrossRefGoogle Scholar
  38. 38.
    W.M. Brown, M. George Jr., and A.C. Wilson, Rapid evolution of animal mitochondrial DNA, Proc. Natl. Acad. Sci. U.S.A. 76:1967 (1979).PubMedCrossRefGoogle Scholar
  39. 39.
    M. Fukanaga and K.L. Yielding, Fate during growth of yeast mitochondrial and nuclear DNA after photolytic attachment of the monoazide analog of ethidium, Biochem. Biophys. Res. Commun. 90:582 (1979).CrossRefGoogle Scholar
  40. 40.
    R.A. Lansman and D.A. Clayton, Selective nicking of mammalian mitochondrial DNA in-vivo: photosensitization by incorporation of 5-bromodeoxy uridine, J. Mol. Biol. 99:761 (1975).PubMedCrossRefGoogle Scholar
  41. 41.
    D.A. Clayton, J.N. Doda, and E.C. Friedberg, The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria, Proc. Natl. Acad. Sci. U.S.A. 71:2777 (1974).PubMedCrossRefGoogle Scholar
  42. 42.
    B.G. Niranjan, N.K. Bhat, and N.G. Avadhani, Preferential attack of mitochondrial DNA by aflatoxin Bx during hepatocarcinogenesis, Science 215:73 (1982).PubMedCrossRefGoogle Scholar
  43. 43.
    J.M. Backer and I.B. Weinstein, Mitochondrial DNA is a major target for a dihydrodiol-epoxide derivative of benzo [a]pyrene, Science 209:297 (1980).PubMedCrossRefGoogle Scholar
  44. 44.
    V. Wunderlich, I. Tetzlaff, and A. Graffi, Studies on nitrosodimethylamine: Preferential methylation of mitochondrial DNA in rats and hamsters, Chem. Biol. Interact. 4:81 (1971–1972).PubMedCrossRefGoogle Scholar
  45. 45.
    J.A. Allen and M.M. Coombs, Covalent binding of polycyclic aromatic compounds and nuclear DNA, Nature 287:244 (1980).PubMedCrossRefGoogle Scholar
  46. 46.
    L. Piko and L. Matsumoto, Complex forms and replicative intermediates of mitochondrial DNA in tissues from adult and senescent mice, Nucl. Acids Res. 4:1301 (1977).PubMedCrossRefGoogle Scholar
  47. 47.
    H.R. Massie, M.B. Baird, and M.M. McMahon, Loss of mitochondrial DNA with aging, Gerontologia 21:231 (1975).PubMedCrossRefGoogle Scholar
  48. 48.
    D.M. Stocco and J.C. Hutson, Quantitation of mitochondrial DNA and protein in the liver of Fisher 344 rats during aging, J. Gerontol. 33:802 (1978).PubMedCrossRefGoogle Scholar
  49. 49.
    R.P. Heumer, K.D. Lee, A.E. Reeves, and C. Bickert, Mitochondrial studies in senescent mice II specific activity, buoyant density and turnover of mitochondrial DNA, Exp. Gerontol. 6:327 (1971).CrossRefGoogle Scholar
  50. 50.
    D.D. Pietronigro, W.B.G. Jones, K. Kalty, andH.B. Demopoulos, Interaction of DNA and liposomes as a model for membrane-mediated DNA damage, Nature 267:78 (1977).PubMedCrossRefGoogle Scholar
  51. 51.
    S. Akasaka, Inactivation of transforming activity of plasmid DNA by lipid peroxidation, Biochim. Biophys. Acta. 867:201 (1986).PubMedCrossRefGoogle Scholar
  52. 52.
    U. Reiss and A.L. Tappel, Fluorescent product formation and changes in structure of DNA reacted with peroxidizing arachidonic acid, Lipids 8:199 (1973).PubMedCrossRefGoogle Scholar
  53. 53.
    S. Inouye, Site-specific cleavage of double-stranded DNA by hydroperoxide of linoleic acid, FEBS Lett. 173:231 (1984).CrossRefGoogle Scholar
  54. 54.
    B.R. Brooks and O.L. Klamerth, Interaction of DNA with bifunctional aldehydes, Eur. J. Biochem. 5:173 (1968).CrossRefGoogle Scholar
  55. 55.
    S. Yonei and H. Furui, Lethal and mutagenic effects of malondialdehyde, a decomposition product of peroxidized lipids on Escherichia coli with different DNA-repair capacities, Mutat. Res. 88:23 (1981).PubMedCrossRefGoogle Scholar
  56. 56.
    F.H. Mukai and B.D. Goldstein, Mutagenicity of malonaldehyde, a decomposition product of peroxidized polyunsaturated fatty acids, Science 191:868 (1976).PubMedCrossRefGoogle Scholar
  57. 57.
    L.J. Marnett, H.K. Hurd, M.C. Hollstein, D.E. Levin, H. Esterbauer, and B.N. Ames, Naturally occurring carbonyl compounds are mutagens in Salmonella tester strain TA 104, Mutat. Res. 148:25 (1985).PubMedCrossRefGoogle Scholar
  58. 58.
    B.N. Ames and R.L. Saul, Oxidative DNA damage as related to cancer and aging, Prog. Clin. Biol. Res. 209A:11 (1986).PubMedGoogle Scholar
  59. 59.
    D.C.H. McBrien and T.F. Slater, eds., “Free Radicals, Lipid Peroxidation and Cancer,” Academic Press, New York (1982).Google Scholar
  60. 60.
    I. Emerit, S.H. Khan, and P.A. Cerutti, Treatment of lymphocyte cultures with a hypoxanthine-xanthine oxidase system induces the formation of transferable clastogenic material, J. Free Rad. Biol. Med. 1:51 (1985).CrossRefGoogle Scholar
  61. 61.
    T. Ochi and P.A. Cerutti, Clastogenic action of hydroperoxy-5, 8, 11, 13-icosatetraenoic acids on the mouse embryo fibroblast C3H/10T1/2, Proc. Natl. Acad. Sci. U.S.A. 84:991 (1987).CrossRefGoogle Scholar
  62. 62.
    U.M. Marinari, M. Ferro, L. Sciaba, R. Finollo, A.M. Bassi, and G. Brambilla, DNA damaging activity of biotic and xenobiotic aldehydes in Chinese hamster ovary cells, Cell Biochem. Funct. 2:243 (1984).Google Scholar
  63. 63.
    P.A. Cerutti, I. Emerit, and P. Amstad, Membrane-mediated chromosomal damage, in: “Genes and Proteins in Oncogenesis,” I.B. Weinstein and H.J. Vogel, eds., Academic Press, New York (1983).Google Scholar
  64. 64.
    M. Albring, J. Griffith, and G. Attardi, Association of a protein structure of probable membrane derivation with HcLa cell mitochondrial DNA near its origin of replication, Proc. Natl. Acad. Sci. U.S.A. 74:1348 (1977).PubMedCrossRefGoogle Scholar
  65. 65.
    A.M. Hruszkewycz, Mitochondrial DNA damage during mitochondrial lipid peroxidation, in: “Anticarcinogenesis and Radiation Protection,” P.A. Cerutti, O.F. Nygaard, and M.G. Simic, eds., Plenum Press, New York (1988).Google Scholar
  66. 66.
    A.M. Hruszkewycz and D.S. Bergtold, Induction of mitochondrial DNA damage during mitochondrial lipid peroxidation, FASEB J. 2:7494 (1988).Google Scholar
  67. 67.
    A.M. Hruszkewycz, Evidence for mitochondrial DNA damage by lipid peroxidation, Biochem. Biophys. Res. Commun. 153:191 (1988).PubMedCrossRefGoogle Scholar
  68. 68.
    C. von Sonntag, U. Hagen, A. Schon-Bopp, and D. Schulte-Frohlinde, Radiation-induced strand breaks in DNA: Chemical and enzymatic analysis of end groups and mechanistic aspects, Adv. Radiat. Biol. 9:109 (1981).Google Scholar
  69. 69.
    K.M. Schaich and D.C. Borg, Radiomemetic effects of peroxidizing lipids on nucleic acids and their bases,.in: “Oxygen Radicals in Chemistry and Biology,” W. Bors, M. Saran, and D. Tait, eds., Walter de Gruyter, Berlin (1984).Google Scholar
  70. 70.
    C.E. Vaca, J. Wilhelm and M. Harms-Raingdahl, Interaction of lipid peroxidation products with DNA. A Review, Mutat. Res. 195:137 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Andrew M. Hruszkewycz
    • 1
  • David S. Bergtold
    • 2
  1. 1.Department of PathologyGeorge Washington University Medical CenterUSA
  2. 2.Center for Radiation ResearchNational Bureau of StandardsGaithersburgUSA

Personalised recommendations