Skip to main content

Oxygen Radicals, Lipid Peroxidation and DNA Damage in Mitochondria

  • Chapter

Part of the book series: Basic Life Sciences ((BLSC,volume 49))

Abstract

Oxygen activation in eukaryotic cells occurs mainly within mitochondria, where the respiratory electron transport chain metabolizes approximately 90% of cellular oxygen. While mitochondrial oxygen metabolism supplies the cell with most of its ATP, it also results in the production of hazardous oxygen radicals.1,2 Oxygen radical production has been estimated to account for approximately 1 to 2% of mitochondrial oxygen consumption.3 Although the mitochondrion is protected by an elaborate system of antioxidants and scavengers,2,4 free radicals may escape their surveillance and cause damage to mitochondrial components. The close spatial relationship between the site of mitochondrial oxygen activation, the peroxidizable lipids of the Inner membrane, and mitochondrial DNA (mtDNA) suggests that oxygen radicals and lipid peroxidation may cause mutation of the mitochondrial genome. The condition of mitochondrial DNA structure is of fundamental importance because this genome encodes key enzymes of the respiratory chain.5 In view of growing evidence indicating that abnormalities of mtDNA may contribute to the etiology of aging6 and a number of diseases, including cancer,7,8 the relationship of mitochondrial oxygen radical production and mtDNA integrity merits further consideration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Nohl, Oxygen radical release in mitochondria: Influence of age,in: “Free Radicals, Aging, and Degenerative Diseases,” J.E. Johnson Jr., R. Walford, D. Harman, and J. Miquel, eds., Alan R. Liss, New York (1986).

    Google Scholar 

  2. B. Chance, H. Sies, and A. Boveris, Hydroperoxide metabolism in mammalian organs, Physiol. Rev. 59:617 (1979).

    Google Scholar 

  3. H.J. Forman and A. Boveris, Superoxide radical and hydrogen peroxide in mitochondria, in: “Free Radicals in Biology,” vol. V, W.A. Pryor, ed., Academic Press, New York (1982).

    Google Scholar 

  4. I. Fridovich, Superoxide dismutase, Ann. Rev. Biochem. 44:147 (1975).

    Article  PubMed  CAS  Google Scholar 

  5. R.W. Yatscoff, S. Goldskin, and K.B. Freedman, Conservation of genes coding for proteins synthesized in human mitochondria, Somatic Cell Genet. 4:633 (1978).

    Article  PubMed  CAS  Google Scholar 

  6. J. Miguel and J. Fleming, Theoretical and experimental support for an “oxygen radical-mitochondrial injury,” hypothesis of cell aging, in: “Free Radicals, Aging, and Degenerative Diseases,” J.E. Johnson Jr., R. Walford, D. Harman, and J. Miguel, eds., Alan R. Liss, New York (1986).

    Google Scholar 

  7. J.W. Shay and H. Werbin, Are mitochondrial DNA mutations involved in the carcinogenic process? Mutat. Res. 186:149 (1987).

    Article  PubMed  CAS  Google Scholar 

  8. C.R. Merril and M.G. Harrington, The search for mitochondrial inheritance of human diseases, Trends in Genetics 1:140 (1985).

    Article  CAS  Google Scholar 

  9. G. Loschen, L. Flohe, and B. Chance, Respiratory chain linked H2O2 production in pigeon heart mitochondria, FEBS Lett. 18:261 (1971).

    Article  PubMed  CAS  Google Scholar 

  10. A. Boveris, N. Oshino, and B. Chance, The cellular production of hydrogen peroxide, Biochem. J. 128:617 (1972).

    PubMed  CAS  Google Scholar 

  11. H. Nohl and D. Hegner, Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82:563 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. G. Loschen, A. Azzi, and L. Flohe, Mitochondrial H2O2 formation at site II, Hoppe-Sevlers Z. Physiol. Chem. 354:791 (1973).

    Article  CAS  Google Scholar 

  13. G. Loschen, A. Azzi, and L. Flohe, Mitochondrial hydrogen peroxide formations, in: “Alcohol and Aldehyde Metabolizing Systems,” R.G. Thurman, T. Yonetani, J.R. Williamson, and B. Chance, eds., Academic Press, New York (1974).

    Google Scholar 

  14. G. Loschen, A. Azzi, and L. Flohe, Mitochondrial H202 formation: Relationship with energy conservation, FEBS Lett. 33:84 (1973).

    Article  PubMed  CAS  Google Scholar 

  15. E. Cadenas, A. Boveris, C.I. Ragan, and A.O.M. Stopani, Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome C reductase from beef heart mitochondria, Arch. Biochem. Biophvs. 180:248 (1977).

    Article  CAS  Google Scholar 

  16. H.J. Forman, The role of ubisemiquinone in superoxide production by dihydroorotate dehydrogenase: A proposed mechanism, in: “The Significance of Superoxide and Superoxide Dismutase,” vol. I, J.V. Bannister and H.A.O. Hill, eds., Elsevier, Amsterdam (1980).

    Google Scholar 

  17. D.D. Tyler, Polarographic assay and intracellular distribution of superoxide dismutase in rat liver, Biochem. J. 147:793 (1975).

    Google Scholar 

  18. M.G. Simic and K.A. Taylor, Free radical mechanisms of oxidation reactions, in: “Flavor Quality of Fresh Meat: Warmed-Over Flavor,” A.J. St. Angelo and M.E. Bailey, eds., Academic Press, New York (1987).

    Google Scholar 

  19. A. Naqai and B. Chance, Reactive oxygen intermediates in biochemistry, Annu. Rev. Biochem. 55:137 (1986).

    Article  Google Scholar 

  20. A. Singh, Interconversion of singlet oxygen and related species,Photochem. Photobio. 28:429 (1978).

    Article  Google Scholar 

  21. L.K. Dahle, E.G. Hill, and R.T. Holman, The thiobarbituric acid reaction and the autoxidation of polyunsaturated fatty acid methyl esters, Arch. Biochem. Biophvs. 98:253 (1962).

    Article  CAS  Google Scholar 

  22. I. Fridovich, Superoxide radical: an endogenous toxicant, Annu. Rev. Pharmacol. Toxicol. 23:239 (1983).

    Article  PubMed  CAS  Google Scholar 

  23. K.L. Fong, P.B. McCary, J.L. Poyer, H.P. Misra, and B.B. Keele, Evidence for superoxide-dependent reduction of Fe3+ and its role in enzyme-generated hydroxy1 radical formation, Chem. Biol. Interact. 15:77 (1976).

    Article  PubMed  CAS  Google Scholar 

  24. S.D. Aust, L.A. Morehouse, and CE. Thomas, Role of metals in oxygen radical reactions, J. Free Rad. Biol. Med. 1:3 (1985).

    Article  CAS  Google Scholar 

  25. B.H.J. Bielski, R.L. Arudi, and M.W. Sutherland, A study of the reactivity of HO2/O2 - with unsaturated fatty acids, J. Biol. Chem. 258:4759 (1983).

    PubMed  CAS  Google Scholar 

  26. C. von Sonntag, “The Chemical Basis of Radiation Biology,” Taylor and Francis, London (1987).

    Google Scholar 

  27. D.C. Harris and P. Aisen, Facilitation of Fe(II) autoxidation by Fe(III) complexing agents, Biochim. Biophvs. Acta 329:156 (1973).

    Article  CAS  Google Scholar 

  28. G. Schwarzenbach and J. Heller, Komplexone XVIII, Die eisen(II)-und eisen(III)-komplexe des achylenediamintetraessigsaure und ihr redoxgleichgewich, Helv. Chim. Acta 34:576 (1951).

    Article  CAS  Google Scholar 

  29. H. Esterbauer, Aldehydic Products of Lipid Peroxidation, in: “Free Radicals, Lipid Peroxidation and Cancer,” D.C.H. McBrien and T.F. Slater, eds., Academic Press, New York (1982).

    Google Scholar 

  30. A.M. Hruszkewycz, E.A. Glende, Jr., and R.O. Recknagel, Destruction of microsomal cytochrome P-450 and glucose-6-phosphatase by lipids extracted from peroxidized microsomes, Toxicol. Appl. Pharmacol. 46:695 (1978).

    Article  PubMed  CAS  Google Scholar 

  31. R.G. Hansford, Bioenergetics in aging, Biochim. Biophys. Acta 726:41 (1983).

    Article  PubMed  CAS  Google Scholar 

  32. R.B. Bacon, C.H. Park, G.M. Brittenham, R. O’Neill, and A.S. Tavill, Hepatic mitochondrial oxidative metabolism in rats with chronic dietary iron overload, Hepatology 5:789 (1985).

    Article  PubMed  CAS  Google Scholar 

  33. Y.A. Vlademirov, V.I. Olenev, T.B. Suslova, and A.P. Chevemisina, Lipid peroxidation in mitochondria membrane, Adv. Lipid Res. 17:173 (1980).

    Google Scholar 

  34. R.O. Recknagel and A.K. Ghoshal, Quantitative estimation of peroxidative degeneration of rat liver microsomal and mitochondrial lipids after carbon tetrachloride poisoning, Exp. Mol. Pathol. 5:413 (1966).

    Article  PubMed  CAS  Google Scholar 

  35. R. Ogura, Adriamyein-induced lipid peroxidation and its protection,in: “Lipid Peroxides in Biology and Medicine,” K. Yagi, ed., Academic Press, London (1982).

    Google Scholar 

  36. D.A. Clayton, Replication of animal mitochondrial DNA, Cell 28:693 (1982).

    Article  PubMed  CAS  Google Scholar 

  37. I. Salazar, L. Tarrago-Litvak, L. Gil, and S. Litvak, The effect of benzo(a)pyrene on DNA synthesis and DNA polymerase activity of rat liver mitochondria, FEBS Lett. 138:45 (1982).

    Article  PubMed  CAS  Google Scholar 

  38. W.M. Brown, M. George Jr., and A.C. Wilson, Rapid evolution of animal mitochondrial DNA, Proc. Natl. Acad. Sci. U.S.A. 76:1967 (1979).

    Article  PubMed  CAS  Google Scholar 

  39. M. Fukanaga and K.L. Yielding, Fate during growth of yeast mitochondrial and nuclear DNA after photolytic attachment of the monoazide analog of ethidium, Biochem. Biophys. Res. Commun. 90:582 (1979).

    Article  Google Scholar 

  40. R.A. Lansman and D.A. Clayton, Selective nicking of mammalian mitochondrial DNA in-vivo: photosensitization by incorporation of 5-bromodeoxy uridine, J. Mol. Biol. 99:761 (1975).

    Article  PubMed  CAS  Google Scholar 

  41. D.A. Clayton, J.N. Doda, and E.C. Friedberg, The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria, Proc. Natl. Acad. Sci. U.S.A. 71:2777 (1974).

    Article  PubMed  CAS  Google Scholar 

  42. B.G. Niranjan, N.K. Bhat, and N.G. Avadhani, Preferential attack of mitochondrial DNA by aflatoxin Bx during hepatocarcinogenesis, Science 215:73 (1982).

    Article  PubMed  CAS  Google Scholar 

  43. J.M. Backer and I.B. Weinstein, Mitochondrial DNA is a major target for a dihydrodiol-epoxide derivative of benzo [a]pyrene, Science 209:297 (1980).

    Article  PubMed  CAS  Google Scholar 

  44. V. Wunderlich, I. Tetzlaff, and A. Graffi, Studies on nitrosodimethylamine: Preferential methylation of mitochondrial DNA in rats and hamsters, Chem. Biol. Interact. 4:81 (1971–1972).

    Article  PubMed  CAS  Google Scholar 

  45. J.A. Allen and M.M. Coombs, Covalent binding of polycyclic aromatic compounds and nuclear DNA, Nature 287:244 (1980).

    Article  PubMed  CAS  Google Scholar 

  46. L. Piko and L. Matsumoto, Complex forms and replicative intermediates of mitochondrial DNA in tissues from adult and senescent mice, Nucl. Acids Res. 4:1301 (1977).

    Article  PubMed  CAS  Google Scholar 

  47. H.R. Massie, M.B. Baird, and M.M. McMahon, Loss of mitochondrial DNA with aging, Gerontologia 21:231 (1975).

    Article  PubMed  CAS  Google Scholar 

  48. D.M. Stocco and J.C. Hutson, Quantitation of mitochondrial DNA and protein in the liver of Fisher 344 rats during aging, J. Gerontol. 33:802 (1978).

    Article  PubMed  CAS  Google Scholar 

  49. R.P. Heumer, K.D. Lee, A.E. Reeves, and C. Bickert, Mitochondrial studies in senescent mice II specific activity, buoyant density and turnover of mitochondrial DNA, Exp. Gerontol. 6:327 (1971).

    Article  Google Scholar 

  50. D.D. Pietronigro, W.B.G. Jones, K. Kalty, andH.B. Demopoulos, Interaction of DNA and liposomes as a model for membrane-mediated DNA damage, Nature 267:78 (1977).

    Article  PubMed  CAS  Google Scholar 

  51. S. Akasaka, Inactivation of transforming activity of plasmid DNA by lipid peroxidation, Biochim. Biophys. Acta. 867:201 (1986).

    Article  PubMed  CAS  Google Scholar 

  52. U. Reiss and A.L. Tappel, Fluorescent product formation and changes in structure of DNA reacted with peroxidizing arachidonic acid, Lipids 8:199 (1973).

    Article  PubMed  CAS  Google Scholar 

  53. S. Inouye, Site-specific cleavage of double-stranded DNA by hydroperoxide of linoleic acid, FEBS Lett. 173:231 (1984).

    Article  Google Scholar 

  54. B.R. Brooks and O.L. Klamerth, Interaction of DNA with bifunctional aldehydes, Eur. J. Biochem. 5:173 (1968).

    Article  Google Scholar 

  55. S. Yonei and H. Furui, Lethal and mutagenic effects of malondialdehyde, a decomposition product of peroxidized lipids on Escherichia coli with different DNA-repair capacities, Mutat. Res. 88:23 (1981).

    Article  PubMed  CAS  Google Scholar 

  56. F.H. Mukai and B.D. Goldstein, Mutagenicity of malonaldehyde, a decomposition product of peroxidized polyunsaturated fatty acids, Science 191:868 (1976).

    Article  PubMed  CAS  Google Scholar 

  57. L.J. Marnett, H.K. Hurd, M.C. Hollstein, D.E. Levin, H. Esterbauer, and B.N. Ames, Naturally occurring carbonyl compounds are mutagens in Salmonella tester strain TA 104, Mutat. Res. 148:25 (1985).

    Article  PubMed  CAS  Google Scholar 

  58. B.N. Ames and R.L. Saul, Oxidative DNA damage as related to cancer and aging, Prog. Clin. Biol. Res. 209A:11 (1986).

    PubMed  CAS  Google Scholar 

  59. D.C.H. McBrien and T.F. Slater, eds., “Free Radicals, Lipid Peroxidation and Cancer,” Academic Press, New York (1982).

    Google Scholar 

  60. I. Emerit, S.H. Khan, and P.A. Cerutti, Treatment of lymphocyte cultures with a hypoxanthine-xanthine oxidase system induces the formation of transferable clastogenic material, J. Free Rad. Biol. Med. 1:51 (1985).

    Article  CAS  Google Scholar 

  61. T. Ochi and P.A. Cerutti, Clastogenic action of hydroperoxy-5, 8, 11, 13-icosatetraenoic acids on the mouse embryo fibroblast C3H/10T1/2, Proc. Natl. Acad. Sci. U.S.A. 84:991 (1987).

    Article  Google Scholar 

  62. U.M. Marinari, M. Ferro, L. Sciaba, R. Finollo, A.M. Bassi, and G. Brambilla, DNA damaging activity of biotic and xenobiotic aldehydes in Chinese hamster ovary cells, Cell Biochem. Funct. 2:243 (1984).

    CAS  Google Scholar 

  63. P.A. Cerutti, I. Emerit, and P. Amstad, Membrane-mediated chromosomal damage, in: “Genes and Proteins in Oncogenesis,” I.B. Weinstein and H.J. Vogel, eds., Academic Press, New York (1983).

    Google Scholar 

  64. M. Albring, J. Griffith, and G. Attardi, Association of a protein structure of probable membrane derivation with HcLa cell mitochondrial DNA near its origin of replication, Proc. Natl. Acad. Sci. U.S.A. 74:1348 (1977).

    Article  PubMed  CAS  Google Scholar 

  65. A.M. Hruszkewycz, Mitochondrial DNA damage during mitochondrial lipid peroxidation, in: “Anticarcinogenesis and Radiation Protection,” P.A. Cerutti, O.F. Nygaard, and M.G. Simic, eds., Plenum Press, New York (1988).

    Google Scholar 

  66. A.M. Hruszkewycz and D.S. Bergtold, Induction of mitochondrial DNA damage during mitochondrial lipid peroxidation, FASEB J. 2:7494 (1988).

    Google Scholar 

  67. A.M. Hruszkewycz, Evidence for mitochondrial DNA damage by lipid peroxidation, Biochem. Biophys. Res. Commun. 153:191 (1988).

    Article  PubMed  CAS  Google Scholar 

  68. C. von Sonntag, U. Hagen, A. Schon-Bopp, and D. Schulte-Frohlinde, Radiation-induced strand breaks in DNA: Chemical and enzymatic analysis of end groups and mechanistic aspects, Adv. Radiat. Biol. 9:109 (1981).

    Google Scholar 

  69. K.M. Schaich and D.C. Borg, Radiomemetic effects of peroxidizing lipids on nucleic acids and their bases,.in: “Oxygen Radicals in Chemistry and Biology,” W. Bors, M. Saran, and D. Tait, eds., Walter de Gruyter, Berlin (1984).

    Google Scholar 

  70. C.E. Vaca, J. Wilhelm and M. Harms-Raingdahl, Interaction of lipid peroxidation products with DNA. A Review, Mutat. Res. 195:137 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Hruszkewycz, A.M., Bergtold, D.S. (1988). Oxygen Radicals, Lipid Peroxidation and DNA Damage in Mitochondria. In: Simic, M.G., Taylor, K.A., Ward, J.F., von Sonntag, C. (eds) Oxygen Radicals in Biology and Medicine. Basic Life Sciences, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5568-7_69

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5568-7_69

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5570-0

  • Online ISBN: 978-1-4684-5568-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics