The Effect of Oxygen on the OH Radical-Induced Strand Break Formation of DNA In Vitro and In Vivo

  • Dietrich Schulte-Frohlinde
Part of the Basic Life Sciences book series (BLSC, volume 49)


The increased radiosensitivity of oxygenated cells as compared to deoxygenated cells is called “The Oxygen Effect” in radiobiology. Quantitatively the oxygen effect is expressed as the oxygen enhancement factor (OER), which is the ratio of the dose in the absence of oxygen to that in its presence required to obtain the same effect. With survival as the end point, the OER is the dose required to deactivate 63% (37% survival) of the population in the presence of oxygen (D37 O2) divided by that in the absence of oxygen (D37 N2). For E. coli strains the OER values are typically around three. The values depend on the genetic background of the strain, on the medium, on additives (e.g., thiol concentration) and on the status of the cells (e.g., logarithmically growing cells or stationary cells).


Electron Spin Resonance Strand Break Electron Spin Resonance Signal Peroxyl Radical Oxygen Effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Bonura, C. D. Town, K. C. Smith, and H. S. Kaplan, The influence of oxygen on the yield of DNA double-strand breaks in X-irradiated Escherichia coli K-12, Radiat. Res., 63:567 (1975).PubMedCrossRefGoogle Scholar
  2. 2.
    F. Krasin and F. Hutchinson, Repair of DNA double strand breaks in Escherichia coli, with requires recA function and the presence of duplicate genome, J. Mol. Biol., 116:81 (1977).PubMedCrossRefGoogle Scholar
  3. 3.
    H. S. Kaplan, DNA-strand scission and loss of viability after irradiation of normal and sensitized bacterial cells, Proc. Natl. Acad. Sci. USA, 55:1442 (1966).PubMedCrossRefGoogle Scholar
  4. 4.
    K. S. Y. Ho, Induction of DNA double-strand breaks by X-rays in a radiosensitive strain of yeast Saccharomyces cerevisiae, Mutation Res., 30:327 (1975).PubMedCrossRefGoogle Scholar
  5. 5.
    R. E. Krisch, F. Krasin, and C. J. Sauri, DNA strand breakage, repair and lethality after I decay in rec+ and recA strains of Escherichia coli, Int. J. Radiat. Biol., 29:37 (1976).CrossRefGoogle Scholar
  6. 6.
    M. A. Resnick and P. Martin, The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control, Molec. Gen. Genetics, 143:119 (1976).CrossRefGoogle Scholar
  7. 7.
    M. A. Resnick, Similar responses to ionizing radiation of fungal and vertebrate cells and the importance of DNA double-strand breaks, J. Theoret. Biol., 71:339 (1978).CrossRefGoogle Scholar
  8. 8.
    D. Frankenberg, M. Frankenberg-Schwager, D. Blöcher, and R. Harbich, Evidence for DNA double-strand breaks as the critical lesions in yeast cells irradiated with sparsely or densely ionizing radiation under oxic or anoxic conditions, Radiat. Res., 88:524 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    J. W. Hülsewede. Doppelstrangbrüche in der DNA in vivo und vitro nach Co-γ-Bestrahlung, Dissertation Ruhr-Universität Bochum (1985).Google Scholar
  10. 10.
    S. E. Bresler, L. A. Noskin, and A. V. Suslov, Study of induction and repair of double-strand breaks in DNA in cells of prokaryotes and eukaryotes. I. Use of Zimm elastoviscometer for a study of induction of double-strand breaks in the DNA in γ-irradiated Escherichia coli cells, Mol. Biol., 14:1019 (1980).Google Scholar
  11. 11.
    E. M. Fielden, O. Sapora, and P. S. Loverock, The application of rapid-lysis technique in radiobiology. III. The effect of radiosensitizers on the production of DNA damage and the time course of its repair, Radiat. Res., 75:54 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    O. Sapora, E. M. Fielden, and P. S. Loverock, The application of rapid lysis techniques in radiobiology. II. The time course of the repair of DNA fixed damage and single-strand breaks in Escherichia coli mutants, Radiat. Res., 72:308 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    P. E. Bryant, Immidiate and repair induced DNA double strand breaks in mammalian cells, in: “Mechanisms of DNA Damage and Repair. Implications for Carcinogenesis and Risk Assessment,” M. G. Simic, L. Grossman, and A. C. Upton, Eds., Plenum Press, New York (1986).Google Scholar
  14. 14.
    M. J. Tilby and P. S. Loverock, Measurements of DNA double-strand break yields in E. coli after rapid irradiation and cell inactivation: The effects of inactivation. Technique and anoxic radiosensitizers, Radiat. Res., 96:309 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    M. A. Shenoy, J. A. Asquith, G. E. Adams, B. D. Michael, and M. E. Watts, Time-resolved oxygen effects in irradiated bacteria and mammalian cells: A rapid-mix study, Radiat. Res., 62:498 (1975).PubMedCrossRefGoogle Scholar
  16. 16.
    O. Sapora, E. M. Fielden, and P. S. Loverock, The application of rapid-lysis techniques in radiobiology. I. The effect of oxygen and radiosensitizers on DNA strand break production and repair in E. coli B/r, Radiat. Res., 64:431 (1975).PubMedCrossRefGoogle Scholar
  17. 17.
    F. Hutchinson, Sulfhydryl groups and the oxygen effect on irradiated dilute solutions of enzymes and nucleic acids, Radiat. Res., 14:721 (1961).PubMedCrossRefGoogle Scholar
  18. 18.
    M. A. Siddiqi and E. Bothe, Single- and double-strand break formation in DNA irradiated in aqueous solution. Dependence on dose and OH radical scavenger concentration, Radiat. Res. in press (1987).Google Scholar
  19. 19.
    D. Schulte-Frohlinde, Biological consequences of strand breaks in plasmid and vival DNA, Brit. J. Cancer, 55:129 (1987).Google Scholar
  20. 20.
    P. Howard-Flanders, Effect of oxygen on the radiosensitivity of bacteriophage in the presence of sulfhydryl compounds, Nature, 186:485 (1960).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Edgren, A. Larsson, K. Nilsson, L. Revesz, and O. C. A. Scott, Lack of oxygen effect in glutathione-deficient human cells in culture, Int. J. Radiat. Biol., 37:299 (1980).CrossRefGoogle Scholar
  22. 22.
    T. Alper, “Cellular Radiobiology”, Cambridge University Press,… p. 50 (1979).Google Scholar
  23. 23.
    D. Schulte-Frohlinde, G. Behrens, and A. Önal, Lifetime of peroxyl radicals of poly(U), poly(A) and ss and ds DNA and their reaction with thiols. Int. J. Radiat. Biol., 50:103 (1986).CrossRefGoogle Scholar
  24. 24.
    R. L. Willson, The reaction of oxygen with radiation-induced free radicals in DNA and related compounds. Int. J. Radiat. Biol., 17:349 (1970).CrossRefGoogle Scholar
  25. 25.
    J. B. Verberne, M. V. M. Lafleur, A. Hummel, and H. Loman, Radiation chemistry and biological effects. Non-homogeneous kinetics of reactions of water radicals with biologically active DNA, IAEA Panel Proceedings Series, in press.Google Scholar
  26. 26.
    M. V. M. Lafleur, J. Woldhuis, and H. Loman, Effects of sulphydryl compounds on the radiation damage in biologically active DNA, Int. J. Radiat. Biol., 37:493 (1980).CrossRefGoogle Scholar
  27. 27.
    P. Apontoweil and W. Berends, Glutathione biosynthesis in Escherichia coli K12 properties of the enzymes and regulation, Biochim. Biophys. Acta, 399:1 (1975).PubMedCrossRefGoogle Scholar
  28. 28.
    J. W. Hülsewede and D. Schulte-Frohlinde, Radiation protection of E. coli strains by cysteamine in the presence of oxygen, Int. J. Radiat. Biol., 50:861 (1986).CrossRefGoogle Scholar
  29. 29.
    S. E. Bresler, L. A. Noskin, I. M. Stepanova, and N. A. Kuzovleva, Mechanism of the radioprotecting action of chemical compounds on Escherichia coli cells, Molec. Gen. Genetics, 163:75 (1978).CrossRefGoogle Scholar
  30. 30.
    V. G. Petin and V. L. Matrenina, Radioprotecting action of chemical compounds on γ-irradiated yeast cells of various genotypes, Mol. Gen. Genet., 183:152 (1981).PubMedCrossRefGoogle Scholar
  31. 31.
    P. H. M. Lohman, O. Vos, C. A. Vansluis, J. A. Cohen, Chemical protection against breaks induced in DNA of human and bacterial cells by X-irradiation, Biochem. Biophys., 224:339 (1970).CrossRefGoogle Scholar
  32. 32.
    M. Näslund, L. Ehrenberg, and G. Djalali-Behzad, Antagonism of ascorbate against radioprotective action of cysteamine, Int. J. Radiat. Biol., 30:95 (1976).CrossRefGoogle Scholar
  33. 33.
    S. L. Marklund, N. G. Westman, G. Roos, and J. Carlsson, Radiation resistance and the CuZn superoxide dismutase, Mn superoxide dismutase, catalase, and glutathione peroxidase activities of seven human cell lines, Radiat. Res., 100:115 (1984).PubMedCrossRefGoogle Scholar
  34. 34.
    G. P. van der Schans, J. F. Bleichrodt, and J. Blok, Contribution of various types of damage to inactivation of a biologically-active double-stranded circular DNA by gamma-radiation, Int. J. Radiat. Biol., 23:133 (1973).CrossRefGoogle Scholar
  35. 35.
    J. H. van Touw, J. B. Verberne, J. Retel, and H. Loman, Radiation-induced strand breaks in ΦX-174 replicative from DNA: An improved experimental and theoretical approach, Int. J. Radiat. Biol., 48:567 (1985).CrossRefGoogle Scholar
  36. 36.
    D. Frankenberg, DNS Doppelstrangbrüche als kritische Schäden für die Zellinaktivierung durch ionisierende Strahlen. Eine Analyse molekularer und zellulärer Strahlenschäden, Habilitationsschrift Universität Frankfurt (1983).Google Scholar
  37. 37.
    M. Lennartz, T. Coquerelle, and U. Hagen, Effect of oxygen on DNA strand breaks in irradiated thymocytes, Int. J. Radiat. Biol., 24:621 (1973).CrossRefGoogle Scholar
  38. 38.
    T. Bonura and K. C. Smith, The involvement of indirect effects in cell-killing and DNA double-strand breakage in Y-irradiated Escherichia coli K-12, Int. J. Radiat. Biol., 29:293 (1976).CrossRefGoogle Scholar
  39. 39.
    J. F. Ward, Some biochemical consequences of the spatial distribution of ionizing radiation-produced free radicals, Radiat. Res., 86:185 (1981).PubMedCrossRefGoogle Scholar
  40. 40.
    E. Boye, I. Johansen, and T. Brustad, Timescale for rejoining of bacteriophage Lambda-deoxyribonucleic acid molecules in superinfected POL+ and POLAI strains of Escherichia coli after exposure to 4MEV electrons, J. Bact., 119:522 (1974).PubMedGoogle Scholar
  41. 41.
    N. J. Sargentini and K. C. Smith, Characterization and quantitation of DNA strand breaks requiring recA-dependent repair in X-irradiated Escherichia coli, Radiat. Res., 105:180 (1986).PubMedCrossRefGoogle Scholar
  42. 42.
    I. Johansen, T. Brustad, and W. D. Rupp, DNA strand breaks measured within 100 milliseconds of irradiation of Escherichia coli by 4 MeV electrons, Proc. Nat. Acad. Sci. USA, 72:167 (1975).PubMedCrossRefGoogle Scholar
  43. 43.
    E. Boye, Formation and repair of DNA double strand breaks in superinfecting phage λ after ionizing irradiation of Escherichia coli host cells, Radiat. Res., 81:427 (1980).PubMedCrossRefGoogle Scholar
  44. 44.
    E. Bothe, G. Behrens, E. Böhm, B. Sethuram, and D. Schulte-Frohlinde, Hydroxyl radical-induced strand break formation of poly(U) in the presence of oxygen. Comparison of the rates as determined by conductivity, ESR and rapid-mix experiments with a thiol, Int. J. Radiat. Biol., 49:57 (1986).CrossRefGoogle Scholar
  45. 45.
    D. Schulte-Frohlinde and E. Bothe, Identification of a major pathway of strand break formation in poly U induced by OH radicals in presence of oxygen, Z. Naturforsch., 39c:315 (1984).Google Scholar
  46. 46.
    D. Schulte-Frohlinde and C. von Sonntag, Radiolysis of DNA and model system in the presence of oxygen, in: “Oxidative Stress,” H. Sies, ed., Academic Press, London, p. 11 (1985).Google Scholar
  47. 47.
    D. J. Deeble, D. Schulz, and C. von Sonntag, Reactions of OH radicals with poly(U) in deoxygenated solutions: sites of OH radical attack and the kinetics of base release, Int. J. Radiat. Biol., 49:915 (1986).CrossRefGoogle Scholar
  48. 48.
    S. Steenken, G. Behrens, and D. Schulte-Frohlinde, Radiation chemistry of DNA model compounds. Part IV. Phosphate ester cleavage in radicals derived from glycerol phosphates, Int. J. Radiat. Biol., 25:205 (1974).CrossRefGoogle Scholar
  49. 49.
    D. J. Deeble and C. von Sonntag, Radiolysis of poly(U) in oxygenated solutions. Int. J. Radiat. Biol., 49:927 (1986).CrossRefGoogle Scholar
  50. 50.
    M. Isildar, M. N. Schuchmann, D. Schulte-Frohlinde, and C. von Sonntag, γ-Radiolysis of DNA in oxygenated aqueous solutions: alterations at the sugar moiety, Int. J. Radiat. Biol., 40:347 (1981).CrossRefGoogle Scholar
  51. 51.
    W. D. Henner, S. M. Grunberg, and W. A. Haseltine, Sites and structure of the gamma-radiation-induced DNA strand breaks, J. Biol. Chem., 257:11750 (1982).PubMedGoogle Scholar
  52. 52.
    U. Mahmutoglu, M. E. Scheulen, and H. Kappus, Oxygen radical formation and DNA damage due to enzymatic reduction of bleomycin-Fe (III), Arch. Toxicol. 60:150 (1987).PubMedCrossRefGoogle Scholar
  53. 53.
    L. Gilomi, M. Takeshita, F. Johnson, C. Iden, and A. P. Grollman, Bleomycin-induced strand-scission of DNA -mechanism of deoxyribose cleavage, J. Biol. Chem., 256:8608 (1981).Google Scholar
  54. 54.
    J. E. Biaglow, M. E. Varnes, E. P. Clark, and E. R. Epp, The Role of Thiols in Cellular Response to Radiation and Drugs, Radiat. Res., 95:437 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Dietrich Schulte-Frohlinde
    • 1
  1. 1.Max-Planck-Institut für StrahlenchemieMülheim/RuhrW. Germany

Personalised recommendations