Isolation and Partial Characterization of an Oxidized LDL in Humans

  • Pietro Avogaro
  • Gabriele Bittolo Bon
  • Giuseppe Cazzolato
Part of the Basic Life Sciences book series (BLSC, volume 49)


Foam cells that accumulate in the earliest of atherosclerotic lesions, the so-called fatty streak, arise from two cellular sources: the arterial smooth muscle cells (SMC) and the monocyte-derived macrophage (MM).2 The latter cell type in culture takes up only a small amount of native low density lipoproteins (LDL) by receptor-mediated endocytosis, but has a distinct receptor system that binds and degrades the more negatively charged LDL.2,3 Incubation of cultured MM with LDL modified by acetylation (acyl-LDL) results in an accumulation of cholesteryl esters (CE) within the cells thus forming foam cells.2 However such chemical modification in vivo seems unlikely. Recently, two possible mechanisms by which the more negatively charged LDL can be produced in vivo have been reported. The interaction of LDL with malondialdehyde (MDA) released by aggregating platelets or produced by peroxidation of fatty acids can lead to the formation of MDA-LDL that increase the CE deposition in cultured MM.4 Moreover, the interaction of LDL with endothelial cells also alters LDL (EC-LDL), thus allowing their uptake by the MM.5


Cholesteryl Ester Arterial Smooth Muscle Cell Cholesteryl Ester Concentration Conjugate Diene Product Isocratic High Performance Liquid Chromatography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Ross, Atherosclerosis: A problem of the biology of the arterial wall cells and their interaction with blood components, Arterioclerosis 1:239 (1981).Google Scholar
  2. 2.
    J.L. Goldstein, Y.K. Ho, S.K. Basu, and M.S. Brown, Binding site on macrophage that mediates uptake and degradation of acetylated low density lipoproteins, producing massive cholesterol ester deposition, Proc. Natl. Acad. Sci. USA 76:333 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    O. Stein and Y. Stein, Bovine aortic endothelial cells display macrophage-like properties towards acetylated 125I-labelled low density lipoproteins, Biochim. Biophys. Acta 620:631 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    A.M. Fogelman, I. Schechter, I.M. Seager, M. Hokom, J.S. Childs, and P.A. Edwards, Malondialdehyde alteration of low density lipoproteins leads to cholesterol ester accumulation in human monocyte-derived macrophages, Proc. Natl. Acad. Sci. USA 77: 2214 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    T. Henriksen, E. Mahoney, and D. Steinberg, Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells; recognition by receptors for acetylated low density lipoproteins, Proc. Nat. Acad. Sci. USA 78: 6499 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    J.R. Hessler, D.W. Morel, J.L. Lewis, and G.M. Ghisolm, Lipoprotein oxidation and lipoprotein-induced cytotoxicity, Arteriosclerosis 3: 215 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Henriksen, S.A. Evensen, and B. Carlander, Injury to human endothelial cells in culture induced by low density lipoproteins, Scand. J. Clin. Lab. Invest. 39: 361 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    J. Schuh, A. Novogradsky, and R.H. Haschemeyer, Inhibition of lymphocyte mitogenesis by autoxidized low density lipoproteins, Biochem. Biophys. Res. Comm. 84: 763 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    U.P. Steinbrecher, S. Parthasarathy, D.S. Leake, J.L. Witztum, and D. Steinberg, Modification of low density lipoproteins by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids, Proc. Natl. Acad. Sci. USA 81: 3883 (1985).CrossRefGoogle Scholar
  10. 10.
    A. Szczeklik and R.J. Gryglewski, Low density lipoproteins (LDL) are carriers for lipid peroxides and inhibit Prostacyclin (PGI2) biosynthesis in arteries, Artery 6: 488 (1980).Google Scholar
  11. 11.
    M.T. Quinn, S. Parthasarathy and D. Steinberg, Endothelial cell derived chemotactic activity for mouse peritoneal macrophages and the effects of modified forms of low density lipoproteins, Proc. Natl. Acad. Sci. USA 82:5949 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    H.F. Hoff, LDL with altered surface charge: A new risk factor in atherogenesis? Artery 6: 178 (1979).Google Scholar
  13. 13.
    T.G. Redgrave, D.C.K. Roberts, and C.E. West, Separation of plasma lipoproteins by density gradient ultracentrifugation, Anal. Biochem. 65:42 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    W.A. Pryor and L. Castle, Chemical methods for detection of lipid hydroperoxides, in: “Methods in Enzymology: Oxygen Radicals in biological systems, vol. 105”, L. Packer, ed., Academic Press, New York (1984).Google Scholar
  15. 15.
    O.H. Lowry, N.J. Rosenburg, A.L. Farr, and R.J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem., 193:165 (1951).Google Scholar
  16. 16.
    P. Cawood, D.G. Wickens, S.A. Inversen, J.M. Braganza, and T.L. Dormandy, The nature of diene conjugation in human serum, bile and duodenal fluid, FEBS letters, 162:239 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Sevanian, S.F. Muakkassah-Kelly, and S. Montestruque, The influence of phospholipase A2 and glutathione peroxidase on the elimination of membrane lipid peroxides, Arch. Biochem. Biophys. 223: 441 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    S. Parthasarathy, U.P. Steinbrecher, J. Barnett, J.L. Witzum, and D. Steinberg, Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein, Proc. Natl. Acad. Sci. USA 82:3000 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    G. Cazzolato, G. Bittolo-Bon and P. Avogaro, Apoprotein B-48 is a constant finding in very low density lipoproteins in humans, Arterioclerosis 5:88 (1985).CrossRefGoogle Scholar
  20. 20.
    Y.L. Marcel, M. Hogue, R. Theolis, Jr., and R.W. Milne, Mapping of antigenic determinant of human apolipoprotein B using monoclonal antibodies against low density lipoproteins, J. Biol. Chem. 257:13165 (1982).PubMedGoogle Scholar
  21. 21.
    G. Bittolo-Bon, G. Cazzolato, S. Zago, and P. Avogaro, Effects of pantethine on in vitro-peroxidation of low density lipoproteins, Atherosclerosis 57: 99 (1985).CrossRefGoogle Scholar
  22. 22.
    G. Jurgens, J. Lang, and H. Esterbauer, Modification of human low density lipoprotein by the lipid peroxidation product 4-hydroxynonenal, Biochim. Biophys. Acta 875:103 (1986).PubMedCrossRefGoogle Scholar
  23. 23.
    G. Bittolo-Bon, G. Cazzolato and P. Avogaro, Changes of apolipoprotein B molecular weight and immunoreactivity in malondialdehyde-modified low density lipoproteins, Artery 12: 74 (1983).PubMedGoogle Scholar
  24. 24.
    A.L. Tappel, Measurement and protection from in vivo lipid peroxidation, in: “Free Radicals in Biology,” W.A. Pryor, ed, Academic Press, New York (1980).Google Scholar
  25. 25.
    P. Hochstein and C. Rice-Evans, Lipid peroxidation and membrane alterations in erythrocyte survival, in: “Lipid Peroxide in Biology and Medicine”, K. Yagi, ed., Academic Press, New York (1982).Google Scholar
  26. 26.
    K.J.A. Davies, Protein damage and degradation by oxygen radicals, J. Biol. Chem. 262:9895 (1987).PubMedGoogle Scholar
  27. 27.
    G. Bittolo-Bon, G. Cazzolato, and P. Avogaro, Presence of a modified LDL in humans: Effect of vitamin E, in: “Clinical and Nutritional Aspects of Vitamin E,” O. Hayaishi and M. Mino, eds., Elsevier Science Publishers, Amsterdam (1987).Google Scholar
  28. 28.
    P. Avogaro, Phospholipids in human atherosclerosis, in “Phospholipids and atherosclerosis”, P. Avogaro, M. Mancini, G. Ricci and R. Paoletti, eds., Raven Press, Nev York (1985).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Pietro Avogaro
    • 1
  • Gabriele Bittolo Bon
    • 1
  • Giuseppe Cazzolato
    • 1
  1. 1.Unit for AtherosclerosisGeneral Regional HospitalVeniceItaly

Personalised recommendations