Advertisement

The Oxidative Modification of Lens Proteins

  • Donita Garland
  • Paul Russell
  • J. Samuel ZiglerJr.
Part of the Basic Life Sciences book series (BLSC, volume 49)

Abstract

Many post-translational modifications of lens proteins occur during aging.1 Since the lens continues to grow throughout life and its cells and proteins are not turned over, these modifications accumulate in the older fiber cells.

Keywords

Electron Spin Resonance Carbonyl Content Lens Crystallins Human Lens Lens Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. Hoenders and H. Bloemendal, Aging of Lens Proteins, in: “Molecular and Cellular Biology of the Eye Lens,” H. Bloemendal, ed., John Wiley & Sons, Inc., New York (1981).Google Scholar
  2. 2.
    L. Fucci, C. N. Oliver, M. J. Coon, and E. R. Stadtman, Inactivation of key metabolic enzymes by mixed-function oxidation reactions: Possible implication in protein turnover and aging, Proc.Natl.Acad.Sci.U.S.A. 80:1521 (1983).PubMedCrossRefGoogle Scholar
  3. 3.
    K.-W. Kim, S. G. Rhee, and E. R. Stadtman, Nonenzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron, J.Biol.Chem. 260:15394 (1985).PubMedGoogle Scholar
  4. 4.
    R. L. Levine, Oxidative modification of glutamine synthetase, J.Biol.Chem. 258:11823 (1983).PubMedGoogle Scholar
  5. 5.
    R. L. Levine, Mixed-function oxidation of histidine residues, in: “Methods of Enzymology,” F. Wold and K. Moldave, eds., Academic Press, New York (1984).Google Scholar
  6. 6.
    B. Chance, The reactions of catalase in the presence of the notation system, Biochem.J. 46:387 (1950).PubMedGoogle Scholar
  7. 7.
    A. J. Rivett, Preferential degradation of the oxidatively modified form of glutamine synthetase by intracellular proteases, J.Biol.Chem. 260:300 (1985).PubMedGoogle Scholar
  8. 8.
    D. L. Garland, J. S. Zigler, Jr., and J. Kinoshita, Structural changes in bovine lens crystallins induced by ascorbate, metal, and oxygen, Arch.Biochem.Biophys. 251:771 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    K. G. Bensch, J. E. Fleming, and W. Lohmann, The role of ascorbic acid in senile cataract, Proc.Natl.Acad.Sci.U.S.A. 82:7193 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    J. S. Zigler, Jr., P. Russell, L. J. Takemoto, S. J. Schwab, J. S. Hansen, J. Horwitz, and J. H. Kinoshita, Partial characterization of three distinct populations of human γ crystallins, Invest.Ophthamol.Vis.Sci. 26:525 (1985).Google Scholar
  11. 11.
    S. O. Meakin, M. L. Breitman, and L.-C. Tsui, Structural and evolutionary relationships among five members of the human-crystallin gene family, Mol.Cell.Biol. 5:1408 (1985).PubMedGoogle Scholar
  12. 12.
    P. Russell, D. L. Garland, J. S. Zigler, Jr., S. O. Meakin, L.-C. Tsui, and M. L. Breitman, Aging effects of vitamin C on a human lens protein produced in vitro, FASEB Journal 1:32 (1987).PubMedGoogle Scholar
  13. 13.
    W. Lohmann, W. Schmehl, and J. Strobel, Nuclear cataract: Oxidative damage to the lens, Exp.EyeRes. 43:859–862 (1986).CrossRefGoogle Scholar
  14. 14.
    J. Bellows, Biochemistry of lens: Some studies in vitamin C and the lens, Arch. Ophth. 16:58 (1936).CrossRefGoogle Scholar
  15. 15.
    M. Testa, S. Daniels, and M. Bocci, The reactivity of the serum protein-SH groups in the senile cataract, Ophthalmologica 147:485 (1964).PubMedCrossRefGoogle Scholar
  16. 16.
    R. Nath, S. K. Srivastava, and K. Singh, Accumulation of Cu and inhibition of LDH activity in human senile cataractous lens, Indian J.Exp.Biol. 7:25 (1969).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Donita Garland
    • 1
  • Paul Russell
    • 1
  • J. Samuel ZiglerJr.
    • 1
  1. 1.National Eye InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations