Advertisement

Phagocyte Dioxygenation Reactions Yielding Chemiluminescence: The Maximum Multiplicity and Spin Conservation Rules Relative to Oxygen Reactivity

  • Robert C. Allen
Part of the Basic Life Sciences book series (BLSC, volume 49)

Abstract

Considering the diversity of microbes and microbial defenses, the microbicidal activities of phagocytes are astonishingly broad spectrum, lethal, and controlled. Microbicidal action is a consequence of the metabolic mechanisms whereby phagocytes alter the quantum state of O2, and in so doing, realize the thermodynamic potential for direct O2 reactivity. Chemiluminescence is an energy product of the resulting dioxygenation reactions and, under proper test conditions, can be employed for the detection and quantification of such reactions.2–4

Keywords

Microbicidal Activity Multiplicity Product Maximum Multiplicity Singlet Molecular Oxygen Absolute Reaction Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. Klebanoff and R.C. Clark, “The Neutrophil: Function and Clinical Disorders,” North-Holland, Amsterdam (1978).Google Scholar
  2. 2.
    R. C. Allen, R. L. Stjernholm, and R. H. Steele, Evidence of the generation of (an) electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity, Biochem. Biophys. Res. Commun. 47:679 (1972).CrossRefPubMedGoogle Scholar
  3. 3.
    R. C. Allen, Reduced, radical, and excited state oxygen in leukocyte microbicidal activity, Front. Biol. 48:197 (1979).PubMedGoogle Scholar
  4. 4.
    R. C. Allen, Phagocytic leukocyte oxygenation activity and chemiluminescence: A kinetic approach to analysis, Meth. Enzymol. 133:449 (1986).CrossRefPubMedGoogle Scholar
  5. 5.
    H. Eyring, The activated complex in chemical reactions, J. Chem. Phys. 3:107 (1935).CrossRefGoogle Scholar
  6. 6.
    G. Herzberg, “Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules,” Van Nostrand Reinhold, New York (1950).Google Scholar
  7. 7.
    K. L. Laidler, “The Chemical Kinetics of Excited States,” University Press, Oxford (1955).Google Scholar
  8. 8.
    L. Salem, “Electrons in Chemical Reactions. First Principles,” Wiley-Interscience, New York (1982).Google Scholar
  9. 9.
    E. W. Neuman, Potassium superoxide and the three electron bond, J. Chem. Phys. 2:31 (1934).CrossRefGoogle Scholar
  10. 10.
    A. E. Steam and H. Eyring, Nonadiabatic reactions. The decomposition of N2O, J. Chem. Phys. 3:778 (1935).CrossRefGoogle Scholar
  11. 11.
    R. C. Allen, R. L. Stjernholm, R. R. Benerito, and R. H. Steele, Functionality of electronic excitation states in human microbicidal activity, in: “Chemiluminescence and Bioluminescence,” M.J. Cormier, D. M. Hercules, and J. Lee eds., Plenum, New York, p. 498 (1973).Google Scholar
  12. 12.
    B. M. Babior, R. S. Kipnes, and J. T. Cumutte, Biological defense mechanisms: The production by leukocytes of superoxide, a potential bactericidal agent, JClin. Invest. 52:741 (1973).CrossRefPubMedGoogle Scholar
  13. 13.
    D. Behar, G. Czapski, J. Rabani, L. M. Dorfman, and H. A. Schwarz, The acid dissociation constant and decay kinetics of the perhydroxyl radical, J. Phys. Chem. 74:3209 (1970).CrossRefGoogle Scholar
  14. 14.
    A. U. Khan, Singlet molecular oxygen from superoxide and sensitized fluorescence of organic molecules, Science 168:476 (1970).CrossRefPubMedGoogle Scholar
  15. 15.
    J. M. McCord and I. Fridovich, Superoxide dismutase. An enzymatic function for erythrocuprein, J. Biol. Chem. 244:6049 (1969).PubMedGoogle Scholar
  16. 16.
    L. M. Dorfman and G. L. Adams, Reactivity of the hydroxyl radical in aqueous solution, Natl. Bureau Stds., NSRDS-46 (1973).Google Scholar
  17. 17.
    K. Sehested, O. L+ Rasmussen, and H. Fricke, Rate constants of OH with HO2, O2, H2O2 from hydrogen peroxide formation in pulse-irradiated oxygenated water, J.Phys. Chem. 72:626 (1968).CrossRefGoogle Scholar
  18. 18.
    R. C. Allen, Halide dependence of the myeloperoxidase-mediated antimicrobial system of the polymorphonuclear leukocyte in the phenomenon of electronic excitation, Biochem. Biophys. Res. Commun. 63:675 (1975).CrossRefGoogle Scholar
  19. 19.
    A. U. Khan and M. Kasha, Red chemiluminescence of molecular oxygen in aqueous solution, J. Chem. Phys. 39:2105 (1963).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Robert C. Allen
    • 1
  1. 1.U.S. Army Institute of Surgical ResearchUSA

Personalised recommendations