The Detection of Singlet Oxygen in Biochemical Systems Using 1268 nm Chemiluminescence

  • Jeffrey R. Kanofsky
Part of the Basic Life Sciences book series (BLSC, volume 49)


The production of singlet oxygen has been proposed to contribute to the deleterious effects of a number of biochemical processes including lipid peroxidation, the generation of superoxide anion and the neutrophil respiratory burst.1–3 While a variety of methods have been developed to detect singlet oxygen in biochemical systems, the measurement of singlet oxygen emission at 1268 nm has proved to be particularly useful.4,5 This paper will discuss theoretical and practical factors of relevance to the technique and then review data obtained using this method from a number of biochemical systems.


Singlet Oxygen Peroxyl Radical Biochemical System Deuterium Oxide Singlet Oxygen Quencher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Allen, R. L. Stjernholm, and R.H. Steele, Evidence for the generation of electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bacterial activity, Biochem. Biophvs. Res. Commun. 47:679 (1972).CrossRefGoogle Scholar
  2. 2.
    A. U. Khan, Singlet molecular oxygen from superoxide anion and sensitized flourescence of organic molecules, Science 168:476 (1970).PubMedCrossRefGoogle Scholar
  3. 3.
    R. M. Howes and R. H. Steele, Microsomal (μS) chemiluminescence (CL) induced by NADPH and its relation to lipid peroxidation. Res. Commun. Chem. Pathol. Pharmacol. 2:619 (1971).PubMedGoogle Scholar
  4. 4.
    J. R. Kanofsky, Singlet oxygen production by lactoperoxidase, evidence from 1270 nm chemiluminescence, J. Biol. Chem. 258:5991 (1983).PubMedGoogle Scholar
  5. 5.
    A. U. Khan, P. Gebauer, and L.P. Hager, Chloroperoxidase generation of singlet A molecular oxygen observed directly by spectroscopy in the 1- to 1.6 μm region, Proc. Natl. Acad. Sci. USA 80:5195 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    R. J. Browne and E. A. Ogryzlo, Chemiluminescence from the reaction of chlorine with hydrogen peroxide, Proc. Chem. Soc. 117(1964).Google Scholar
  7. 7.
    A. U. Khan and M. Kasha, Direct spectroscopic observation of singlet oxygen emission at 1268 nm excited by sensitizing dyes of biological interest in liquid solution. Proc. Natl. Acad. Sci. USA 76:6047 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    E. Cadenas and H. Sies, Singlet oxygen formation detected by low-level chemiluminescence during enzymatic reduction of prostaglandin G2 to H2, Hoppe-Seyier’s Z. Physiol. Chem. 364:519 (1983).CrossRefGoogle Scholar
  9. 9.
    E. Cadenas, R. P. Daniele, and B. Chance, Low level chemiluminescence of alveolar macrophages, Spectral evidence for singlet oxygen generation, FEBS Letters 123:225 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    B. D. Cheson, R. S. Christensen, R. Sperling, B. E. Koehler, and B. M. Babior, The origin of the chemiluminescence of phagocytosing granulocytes, J. Clin. Invest. 58:789 (1976).PubMedCrossRefGoogle Scholar
  11. 11.
    R. J. Browne and E. A. Ogryzlo, The yield of singlet oxygen in the reaction of chlorine with hydrogen peroxide, Can. J. Chem. 43:2915 (1965).CrossRefGoogle Scholar
  12. 12.
    C. S. Foote, Detection of singlet oxygen in complex systems: A critique, in: “Biochemical and Clinical Aspects of Oxygen,” W. S. Caughey, ed., Academic Press, New York (1979).Google Scholar
  13. 13.
    A. M. Held, D. J. Halko, and J. K. Hurst, Mechanism of chlorine oxidation of hydrogen peroxide, J. Am. Chem. Soc. 100:5732 (1978).CrossRefGoogle Scholar
  14. 14.
    J. R. Kanofsky, Singlet oxygen production by chloroperoxidase-hydrogen peroxide-halide systems, J.Biol. Chem. 259:5596 (1983).Google Scholar
  15. 15.
    J. R. Kanofsky, Singlet oxygen production by lactoperoxidase: Halide dependence and quantitation of yield, J. Photochem. 25:105 (1984).CrossRefGoogle Scholar
  16. 16.
    B. M. Babior, R. S. Kipnes, and J. T. Curnutte, The production by leukocytes of superoxide, a potential bactericidal agent, J. Clin. Invest. 52:741 (1973).PubMedCrossRefGoogle Scholar
  17. 17.
    J. E. Harrison and J. Schultz, Studies on the chlorinating activity of myeloperoxidase, J. Biol. Chem. 251:1371 (1976).PubMedGoogle Scholar
  18. 18.
    C. C. Winterbourn, Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite, Biochim, Biophys. Acta. 840:204 (1985).CrossRefGoogle Scholar
  19. 19.
    A. U. Khan, Enzyme system generation of singlet (Ag) molecular oxygen observed directly by 1.0–1.8 μm luminescence spectroscopy, J. Am. Chem. Soc. 105:7195 (1983).CrossRefGoogle Scholar
  20. 20.
    J. R. Kanofsky, J. Wright, G. E. Miles-Richardson, and A. I. Tauber, Biochemical requirements for singlet oxygen production by purified human myeloperoxidase, J. Clin. Invest. 74:1489 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    A. U. Khan, Myeloperoxidase singlet molecular oxygen generation detected by direct infrared electronic emission, Biochem. Biophys. Res. Commun. 122:668 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    P. L. Ashley and B. W. Griffin, Chloroperoxidase-catalyzed halogenation of antipyrine, a drug substrate of liver microsomal cytochrome P-450, Arch. Biochem. Biophys. 210:167 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    J. R. Kanofsky and A. I. Tauber, Non-physiologic production of singlet oxygen by human neutrophils and by the myeloperoxidase-H2O2-halide system, Blood 62:82a (1983).Google Scholar
  24. 24.
    C. S. Foote, R. B. Abakerli, R. L. Clough, and R. I. Lehrer, On the question of singlet oxygen production in polymorphonuclear leukocytes, in: “Bioluminescence and Chemiluminescence,” M. A. Deluca and W. D. McElroy, eds., Academic Press, Inc., New York (1981).Google Scholar
  25. 25.
    C. S. Foote, T. E. Goyne, and R. I. Lehrer, Assessment of chlorination by human neutrophils, Nature 301:715 (1983).PubMedCrossRefGoogle Scholar
  26. 26.
    S. T. Test, M. B. Lampert, P. J. Ossanna, J. G. Thoene, and S. J. Weiss, Generation of nitrogen-chlorine oxidants by human phagocytes, J. Clin. Invest. 74:1341 (1984).PubMedCrossRefGoogle Scholar
  27. 27.
    J. R. Kanofsky and B. Axelrod, Singlet oxygen production by soybean lipoxygenase isozymes, J. Biol. Chem. 261:1099 (1986).PubMedGoogle Scholar
  28. 28.
    J. J. M. C. de Groot, G. A. Veldink, J. F. G. Vliegenthart, J. Boldingh, R. Wever, and B. F. van Gelder, Demonstration by EPR spectroscopy of the functional role of iron in soybean lipoxy-genase-1, Biochem. Biophys. Acta 377:71 (1975).PubMedCrossRefGoogle Scholar
  29. 29.
    P. Schieberle, W. Grosch, H. Kexel, and H.-L. Schmidt, A study of oxygen scrambling in the enzymic and non-enzymic oxidation linoleic acid, Biochim. Biophvs. Acta 666:322 (1981).CrossRefGoogle Scholar
  30. 30.
    G. A. Russell, Deuterium-isotope effects in the autooxidation of aralkyl hydrocarbons. Mechanism of interaction of peroxy radicals, J. Am. Chem. Soc. 79:3871 (1957).CrossRefGoogle Scholar
  31. 31.
    J. A. Howard and K. U. Ingold, The self-reaction of sec-butylperoxy radicals. Confirmation of the Russell mechanism, J. Am. Chem. Soc. 90:1056 (1968).CrossRefGoogle Scholar
  32. 32.
    B. Axelrod, Lipoxygenase, in: “Food Related Enzymes,” J. R. Whitaker, ed., Adv. in Chem. Series 136:324 (1974).CrossRefGoogle Scholar
  33. 33.
    C. S. Ramadoss, E. K. Pistorius, and B. Axelrod, Coupled oxidation of carotene by lipoxygenase requires two isoenzymes, Arch. Biochem. Biophys. 190:549 (1978).PubMedCrossRefGoogle Scholar
  34. 34.
    E. A. Sausville, J. Peisach, and S. B. Horwitz, A role for ferrous iron and oxygen in the degradation of DNA by bleomycin, Biochem. Biophys. Res. Commun. 73:814 (1976).PubMedCrossRefGoogle Scholar
  35. 35.
    J. R. Kanofsky, Singlet oxygen production by bleomycin, J. Biol. Chem. 261:13546 (1986).PubMedGoogle Scholar
  36. 36.
    T. A. Dix, R. Fontana, A. Panthani, and L. J. Marnett, Hematin-catalyzed epoxidation of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by polyunsaturated fatty acid hydroperoxides, J. Biol. Chem. 260:5358 (1985).PubMedGoogle Scholar
  37. 37.
    S.J. Weiss, S. T. Test, C. M. Eckmann, D. Roos, and S. Ragiani, Brominating oxidants generated by human eosinophils, Science 234:200 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Jeffrey R. Kanofsky
    • 1
    • 2
  1. 1.Medical Service Edward Hines, Jr.Veterans Administration HospitalHinesUSA
  2. 2.Department of MedicineLoyola University Stritch School of MedicineMaywoodUSA

Personalised recommendations