Skip to main content

Electron Spin Resonance Investigations of Oxygen-Centered Free Radicals in Biological Systems

  • Chapter
Oxygen Radicals in Biology and Medicine

Part of the book series: Basic Life Sciences ((BLSC,volume 49))

Abstract

Oxygen-centered free radicals have been detected directly with ESR in a variety of biological processes such as lipid autoxidation,1 the enzymatic formation of superoxide by xanthine oxidase,2 and hydroxyl radical formation by the Y-irradiation of ice.3 Since the common isotope of oxygen is spin-less, no nuclear hyperfine interaction is possible, and the g-value and any hydrogen hyperfine coupling provide the only criteria for distinguishing an oxygen-centered free radical from other free radicals. The greatest limitation on the direct detection of oxygen-centered free radicals, aside from their high reactivity, is their paramagnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Yanex, C. L. Sevilla, D. Becker, and M. D. Sevilla, Low-temperature autoxidation in unsaturated lipids: An electron spin resonance study, J. Phys. Chem. 91:487 (1987).

    Article  Google Scholar 

  2. P. F. Knowles, J. F. Gibson, F. M. Pick, and R. C. Bray, Electron-spinresonance evidence for enzymic reduction of oxygen to a free radical, the superoxide ion, Biochem. J. 111:53 (1969).

    PubMed  CAS  Google Scholar 

  3. J. K. Kochi, Oxygen radicals, in: “Free Radicals”, Volume II, J. K. Kochi, ed., John Wiley & Sons, New York (1973).

    Google Scholar 

  4. M. C. R. Symons, Electron spin resonance spectra of organic oxy radicals. The radical (CH3)3CO3, J. Am. Chem. Soc. 91:5924 (1969).

    Article  CAS  Google Scholar 

  5. B. Kalyanaraman, C. Mottley, and R. P. Mason, A direct electron spin resonance and spin-trapping investigation of peroxyl free radical formation by hematin/hydroperoxide systems, J. Biol. Chem. 258:3855 (1983).

    PubMed  CAS  Google Scholar 

  6. K. U. Ingold, Peroxy radicals, Acct. Chem. Res. 2:1 (1969).

    Article  CAS  Google Scholar 

  7. N. A. Porter, L. S. Lehman, B. A. Weber, and K. J. Smith, Unified mechanism for polyunsaturated fatty acid autoxidation. Competition of peroxy radical hydrogen atom abstraction, β-scission, and cyclization, J. Am. Chem. Soc. 103:6447 (1981).

    Article  CAS  Google Scholar 

  8. P. J. Thornalley and J. V. Bannister, The spin trapping of superoxide radicals, in: “CRC Handbook of Methods for Oxygen Radical Research,” R. A. Greenwald, ed., CRC Press, Boca Raton (1985).

    Google Scholar 

  9. G. R. Buettner, Spin trapping of hyroxyl radical, in: “CRC Handbook of Methods for Oxygen Radical Research,” R. A. Greenwald, ed., CRC Press, Boca Raton (1985).

    Google Scholar 

  10. J. R. Harbour, V. Chow, and J. R. Bolton, An electron spin resonance study of the spin adducts of OH and HO2 radicals with nitrones in the ultraviolet photolysis of aqueous hydrogen peroxide solutions, Can. J. Chem. 52:3549 (1974).

    Article  CAS  Google Scholar 

  11. C. Mottley, H. D. Connor, and R. P. Mason, [17O]oxygen hyperfine structure for the hydroxyl and superoxide radical adducts of the spin traps, DMPO, PBN and 4-POBN, Biochem. Biophys. Res. Commun. 141:622 (1986).

    Article  PubMed  CAS  Google Scholar 

  12. J. R. Harbour and J. R. Bolton, Superoxide formation in spinach chloroplasts: Electron spin resonance detection by spin trapping, Biochem. Biophys. Res. Commun. 64:803 (1975).

    Article  PubMed  CAS  Google Scholar 

  13. B. G. Taffe, N. Takahashi, T. W. Kensler, and R. P. Mason, Generation of free radicals from organic hydroperoxide tumor promoters in isolated mouse keratinocytes, J. Biol. Chem. 262:12143 (1987).

    PubMed  CAS  Google Scholar 

  14. E. Finkelstein, G. M. Rosen, E. J. Rauckman, and J. Paxton, Spin trapping of superoxide, Mol. Pharmacol. 16:676 (1979).

    Google Scholar 

  15. G. M. Rosen and B. A. Freeman, Detection of superoxide generated by endothelial cells, Proc. Natl. Acad. Sci. USA 81:7269 (1984).

    Article  PubMed  CAS  Google Scholar 

  16. E. Finkelstein, G. M. Rosen, and E. J. Rauckman, Production of hydroxyl radical by decomposition of superoxide spin-trapped adducts, Mol. Pharmacol. 21:262 (1982).

    PubMed  CAS  Google Scholar 

  17. J. V. Bannister, P. Bellavite, M. C. Serra, P. J. Thornalley, and F. Rossi, An EPR study of the production of superoxide radicals by neutrophil NADPH oxidase, FEBS Lett. 145:323 (1982).

    Article  PubMed  CAS  Google Scholar 

  18. P. J. Thornalley, Theory and biological applications of the electron spin resonance technique of spin trapping, Life Chem. Reports 4:57 (1986).

    CAS  Google Scholar 

  19. R. A. Floyd and B. B. Wiseman, Spin-trapping free radicals in the autooxidation of 6-hydroxydopamine, Biochim. Biophys. Acta 586:196 (1979).

    Article  CAS  Google Scholar 

  20. J. R. Harbour and J. R. Bolton, The involvement of the hydroxyl radical in the destructive photooxidation of chlorophylls in vivo and in vitro, Photochem. Photobiol. 28:231 (1978).

    Article  CAS  Google Scholar 

  21. J. W. Lown and H-H. Chen, Evidence for the generation of free hydroxyl radicals from certain quinone antitumor antibiotics upon reductive activation in solution, Can. J. Chem. 59:390 (1981).

    Article  CAS  Google Scholar 

  22. A. L. Castelhano, M. J. Perkins, and D. Griller, Spin trapping of hydroxyl in water: Decay kinetics for the ·OH and CO2 · adducts to 5,5-dimethyl-l-pyrroline-N-oxide, Can. J. Chem. 61:298 (1983).

    Article  CAS  Google Scholar 

  23. K. M. Morehouse and R. P. Mason, The transition metal-mediated formation of the hydroxyl free radical during the reduction of molecular oxygen by ferredoxin-ferredoxin:NADP+ oxidoreductase, J. Biol. Chem. 263:1204 (1988).

    PubMed  CAS  Google Scholar 

  24. D. C. Borg, K. M. Schaich, and A. Forman, Autoxidative cytotoxicity: Is there metal-independent formation of hydroxyl radicals? Are there “crypto-hydroxyl” radicals?, in: “Oxygen Radicals in Chemistry and Biology,” W. Bors, M. Saran, and D. Tait, eds., Walter de Gruyter, Berlin (1984).

    Chapter  Google Scholar 

  25. C. C. Winterbourn and H. C. Sutton, Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: Catalytic requirements and oxygen dependence, Arch. Biochem. Biophys. 235:116 (1984).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Mason, R.P., Morehouse, K.M. (1988). Electron Spin Resonance Investigations of Oxygen-Centered Free Radicals in Biological Systems. In: Simic, M.G., Taylor, K.A., Ward, J.F., von Sonntag, C. (eds) Oxygen Radicals in Biology and Medicine. Basic Life Sciences, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5568-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5568-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5570-0

  • Online ISBN: 978-1-4684-5568-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics