Advertisement

Detection of Lipid Peroxidation Products in Lipids and Tissues by Gas Chromatography-Mass Spectrometry

  • F. J. G. M. van Kuijk
  • D. W. Thomas
  • R. J. Stephens
  • E. A. Dratz
Part of the Basic Life Sciences book series (BLSC, volume 49)

Abstract

Formation of oxygen radicals and lipid peroxidation have been suggested to play a key role in various types of tissue degeneration and pathology such as heart disease, aging, cancer, and retinal degeneration.1,2 Membrane phospholipids and triglycerides contain the principal deposits of unsaturated fatty acids and are thought to be the primary sites of the lipid peroxidation process. The oxidation of membrane phospholipids has been hypothesized to cause an increase in the permeability of cell membranes and/or to inhibit membrane ion pumps and to lead to cell death. This loss of membrane barrier function is thought to lead to edema, disturbances in electrolyte balance, and elevation of intracellular calcium which contributes to the malfunctioning of cells.

Keywords

Lipid Peroxidation Product Electron Capture Detector Cumene Hydroperoxide Linoleate Hydroperoxide Lipid Peroxidation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Marx, Oxygen free radicals linked to many diseases, Science 235:529 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    G. B. Bulkley, The role of oxygen free radicals in human disease processes, Surgery 94:407 (1983).PubMedGoogle Scholar
  3. 3.
    T. F. Slater, Overview of methods used for detecting lipid peroxidation, in: “Methods in Enzymology,” volume 105, L. A. Packer, ed., Academic Press, Orlando (1984).Google Scholar
  4. 4.
    R. P. Bird and H. H. Draper, Comparative studies on different methods of malonaldehyde determination, in: “Methods in Enzymology,” volume 105, L. A. Packer, ed., Academic Press, Orlando (1984).Google Scholar
  5. 5.
    H.-Y. Lee and A. S. Csallany, Measurement of free and bound malondialdehyde in vitamin E deficient and supplemented rat liver tissues, Lipids 22:104 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    R. O. Recknagel and J. R. Glende, Spectrophotometric detection of lipid conjugated dienes, in: “Methods in Enzymology,” volume 105, L. A. Packer, ed., Academic Press, Orlando (1984).Google Scholar
  7. 7.
    T. Asakawa and S. Matsushita, A colorimetric microdetermination of peroxide values utilizing aluminum chloride as the catalyst, Lipids 15:965 (1980).CrossRefGoogle Scholar
  8. 8.
    R. L. Heath and A. L. Tappel, A new sensitive assay for the measurement of hydroperoxides, Anal. Biochem. 76:184 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    F. J. G. M. van Kuijk, G. J. Handelman, and E. A. Dratz, Consecutive action of phospholipase A2 and glutathione peroxidase is required for reduction of phospholipid hydroperoxides and provides a convenient method to determine peroxide values in membranes, J. Free Rad. Biol. Med. 1:421 (1985).CrossRefGoogle Scholar
  10. 10.
    J. Terao, I. Asano, and S. Matsushita, High-performance liquid chromatographic determination of phospholipid peroxidation products of rat liver after carbon tetrachloride administration, Arch. Biochem. Biophys. 235:326 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Tsuchida, T. Miura, K. Mizutani, and K. Aibara, Fluorescent substances in mouse and human sera as a parameter of in vivo lipid peroxidation, Biochim. Biophys. Acta 834:196 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    E. N. Frankel, W. E. Neff, and T. R. Bessler, Analysis of autooxidized fats by gas chromatography-mass spectrometry: V. Photosensitized oxidation, Lipids 14:961 (1979).CrossRefGoogle Scholar
  13. 13.
    H. Hughes, V. Smith, E. Horning, and J. R. Mitchel, High performance liquid chromatography and gas chromatography-mass spectrometry determination of specific lipid peroxidation products in vivo, Anal. Biochem. 130:431 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    H. Hughes, V. Smith, J. O. Tsokos-Kuhn, and J. R. Mitchel, Quantitation of lipid peroxidation products by gas chromatography-mass spectrometry, Anal. Biochem. 152:107 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Lang, С. Celotto, and H. Esterbauer, Quantitative determination of the lipid peroxidation product 4-hydroxynonenal by high performance liquid chromatography, Anal. Biochem. 150:369 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    H. Frank, M. Wiegand, M. Strecker, and D. Thiel, Monohydroperoxides of linoleic acid in endoplasmic lipids of rats exposed to tetrachloromethane, Lipids 22:689 (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    F. J. G. M. van Kuijk, D. W. Thomas, R. J. Stephens, and E. A. Dratz, Gas chromatography-mass spectrometry method for determination of phospholipid peroxides: I. Transesterification to form methyl esters, J. Free Rad. Biol. Med. 1:215 (1985).CrossRefGoogle Scholar
  18. 18.
    F. J. G. M. van Kuijk, D. W. Thomas, R. J. Stephens, and E. A. Dratz, Gas chromatography-mass spectrometry method for determination of phospholipid peroxides: II. Transesterification to form pentafluorobenzyl esters and detection with picogram sensitivity, J. Free Rad. Biol. Med. 1:387 (1985).CrossRefGoogle Scholar
  19. 19.
    F. J. G. M. van Kuijk, D. W. Thomas, R. J. Stephens, and E. A. Dratz, Occurrence of 4-hydroxyalkenals in rat tissues determined as pentafluorobenzyloxime derivatives by gas chromatography-mass spectrometry, Biochem. Biophys. Res. Comm. 139:144 (1986).PubMedCrossRefGoogle Scholar
  20. 20.
    F. J. G. M. van Kuijk, D. W. Thomas, R. J. Stephens, and E. A. Dratz, Lipid peroxidation products in rat adipose associated with vitamin E deficiency measured by gas chromatography-mass spectrometry, in: “Biological Effects of Lipid Peroxidation,” A. Sevanian, ed., in press.Google Scholar
  21. 21.
    R. J. Stephens, D. S. Negi, S. M. Short, F. J. G. M. van Kuijk, E. A. Dratz, and D. W. Thomas, Lipid peroxidation and phototoxic degeneration, in: “Oxygen Radicals in Biology and Medicine,” M. G. Simic, K. A. Taylor, J. A. Ward, С von Sonntag, eds., Plenum Publishing Corp., New York (1988).Google Scholar
  22. 22.
    M. Poot, A. Verkerk, J. F. Koster, H. Esterbauer, and J. F. Jongkind, Influence of cumene hydroperoxide and 4-hydroxynonenal on the glutathione metabolism during in vitro aging of human skin fibroblasts, Eur. J. Biochem. 162:287 (1987).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Benedetti, H. Esterbauer, M. Ferrali, R. Fulceri, and M. Comporti, Evidence for aldehydes bound to liver microsomal protein following CCl4 or BrCCl3 poisoning, Biochim. Biophys. Acta 711:345 (1982).PubMedCrossRefGoogle Scholar
  24. 24.
    E. N. Frankel, Lipid Oxidation: Mechanisms, products and biological significance, J. Аm. Oil Chem. Soc. 61:1908 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • F. J. G. M. van Kuijk
    • 1
  • D. W. Thomas
    • 2
  • R. J. Stephens
    • 2
  • E. A. Dratz
    • 3
  1. 1.Department of BiochemistryMF University of NijmegenNijmegenThe Netherlands
  2. 2.Life Sciences DivisionSRI InternationalMenlo ParkUSA
  3. 3.Chemistry DepartmentMontana State UniversityBozemanUSA

Personalised recommendations