The Role of Hemoglobin in Generating Oxyradicals

  • Joseph M. Rifkind
  • Lu Zhang
  • Jane M. Heim
  • Abraham Levy
Part of the Basic Life Sciences book series (BLSC, volume 49)


The largest fraction of dioxygen in mammalian systems is associated with hemoglobin. The primary function of hemoglobin is the transport of oxygen from the lungs to the tissues, which requires reversible oxygen binding. Nevertheless, a slow rate of autoxidation does take place. It has furthermore been demonstrated that autoxidation coincides with the formation of superoxide.1,2


Oxygen Pressure Intact Erythrocyte Fresh Human Blood Hemolyzed Cell Sickle Erythrocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. P. Misra and I. Fridovich, The generation of superoxide radical during the autoxidation of hemoglobin, J. Biol. Сhem. 247:6960 (1972).Google Scholar
  2. 2.
    R. Wever, B. Oudega, and B. F. van Gelder, Generation of superoxide radicals during the autoxidation of mammalian oxyhemoglobin, Biochim. Biophys. Acta 302:475 (1973).CrossRefGoogle Scholar
  3. 3.
    R. E. Lynch and I. Fridovich, Effects of superoxide on the erythrocyte membrane, J. Biol. Сhem. 253:1838 (1978).Google Scholar
  4. 4.
    R. E. Lynch and I. Fridovich, Permeation of the erythrocyte stroma by superoxide radical, J. Biol. Сhem. 253:4697 (1978).Google Scholar
  5. 5.
    R. P. Herbei, J. W. Eaton, M. Balasingam, and M. H. Steinberg, Spontaneous oxygen radical generation by sickle erythrocytes, J. Clin. Invest. 70:1253 (1982).CrossRefGoogle Scholar
  6. 6.
    S. J. Weiss, The role of superoxide in the destruction of erythrocyte targets by human neutrophils, J. Biol. Сhem. 255:9912 (1980).Google Scholar
  7. 7.
    H. Nohl, D. Hegner, and K.-H. Summer, The mechanism of toxic action of hyperbaric oxygenation on the mitochondria of rat-heart cells, Biochem. Pharmacol. 30:1753 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Mansouri and K. Н. Winterhalter, Nonequivalence of chains in hemoglobin oxidation, Biochemistry 12:946 (1973).CrossRefGoogle Scholar
  9. 9.
    W. J. Wallace, R. A. Houtchens, J. C. Maxwell, and W. S. Caughey, Mechanism of autooxidation for hemoglobins and myoglobins, J. Biol. Сhem. 257:4966 (1982).Google Scholar
  10. 10.
    J. M. McCord and I. Fridovich, Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein), J. Biol. Сhem. 244:6049 (1969).Google Scholar
  11. 11.
    A. Tomoda, A. Tsuji, and Y. Yoneyama, Mechanism of hemoglobin oxidation by ferricytochrome С under aerobic and anaerobic conditions, J. Biol. Сhem. 255:7978 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Joseph M. Rifkind
    • 1
  • Lu Zhang
    • 1
  • Jane M. Heim
    • 1
  • Abraham Levy
    • 1
  1. 1.Laboratory of Cellular and Molecular Biology, Gerontology Research Center, National Institute on AgingNational Institutes of HealthBaltimoreUSA

Personalised recommendations