The Role of Metals in Aqueous Superoxide Chemistry

  • Benon H. J. Bielski
Part of the Basic Life Sciences book series (BLSC, volume 49)


A focal point in the research of metal catalyzed reactions involving oxygen derived species/radicals (•OH, HO2•/O2•̅, H2O2, etc.) is the search for the true nature and mode of formation of the oxidizing agent(s) responsible for the biological damage observed in systems containing both hydrogen peroxide and superoxide radicals. There appears to be a general agreement that one of the most deleterious species is the OH radical, generated either in the “Metal-Catalyzed Haber-Weiss Reaction” (reactions 1–3, Mechanism I)1


High Oxygen Concentration Ferric Ethylene Pulse Radiolysis Study Concurrent Reaction Histidine Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Haber and J. Weiss, Proc. R. Soc. (London), A147:332 (1934).Google Scholar
  2. 2.
    W. Bors, M. Saran, and G. Czapski, The relevance of the superoxide anion radical in biological systems, in: “Proceedings of the International Symposium on Superoxide and Superoxide Dismutases,” W. H. Bannister and J. V. Bannister, eds., Elsevier/North-Holland, New York, pp. 1–31 and references therein (1979).Google Scholar
  3. 3.
    S. D. Aust, L. A. Morehouse, and C. E. Thomas, “Role of metals in oxygen radical reactions”, J. Free. Rad. Biol. Med. 1:3 and references therein (1985).CrossRefGoogle Scholar
  4. 4.
    W. H. Koppenol and J. Butler, Energetics of interconversion reactions of oxyradicals, Adv. Free Rad. Biol. Med. 1:91 and references therein (1985).CrossRefGoogle Scholar
  5. 5.
    R. R. Grinstead, Oxidation of salicylate by model peroxidase catalyst iron-ethylenediaminetetraacetato-iron(III) acid, J. Am. Chem. Soc. 82:3472 (1960).CrossRefGoogle Scholar
  6. 6.
    C. Walling, Fenton’s Reagent Revisited, Acc. Chem. Res. 8:125 (1975).CrossRefGoogle Scholar
  7. 7.
    G. A. Hamilton, J. W. Hanifin, Jr., and J. P. Friedman, The hydroxylation of aromatic compounds by hydrogen peroxide in the presence of catalytic amounts of ferric ion and catechol. Product studies, mechanism, and relation to some enzymic reaction, J. Am. Chem. Soc. 88:5269 (1966).CrossRefGoogle Scholar
  8. 8.
    M. Grootveld and B. Halliwell, An aromatic hydroxylation assay for hydroxyl radicals utilizing high-performance HPLC. Use to investigate the effect of EDTA on the fenton reaction, Free. Rad. Res. Comms. 1:243 (1986).CrossRefGoogle Scholar
  9. 9.
    J. T. Groves and M. Van Der Puy, Stereospecific aliphatic hydroxylation by iron-hydrogen peroxide. Evidence for a stepwise process, J. Am. Chem. Soc. 98:5290 (1976).CrossRefGoogle Scholar
  10. 10.
    A. E. Cahil and H. Taube, The use of heavy oxygen in the study of reactions of hydrogen peroxide, J. Am. Chem. Soc. 74:2312 (1952).CrossRefGoogle Scholar
  11. 11.
    Chelating Agents in Oxidation-Reduction Reactions, Technical Information-Literature Code G-1, Organic Chemical Division, W. R. Grace & Co. (1985).Google Scholar
  12. 12.
    O. K. Borggaard, O. Faver, and V. S. Andersen, Polarographic study of the rate of oxidation of iron(II) chelates by hydrogen peroxide, Acta Chem. Scand. 25:3541 (1971).CrossRefGoogle Scholar
  13. 13.
    Farhataziz and A. B. Ross, “Selected specific rates of reactions of transients from water in aqueous solution. III. Hydroxyl radical and perhydroxyl radical and their radical ions.” NSRDS-NBS 59 (1977).Google Scholar
  14. 14.
    S. N. Bhattacharyya and K. P. Kundu, The radiation chemistry of aqueous solutions of ferrie ethylenediaminetetraacetate, Int. J. Radiat. Phys. Chem. 3:1 (1971).CrossRefGoogle Scholar
  15. 15.
    B. K. Sharma and K. Sahul, 60Co γ-Radiolysis of iron(III) nitrilotriacetate in aqueous solutions, Radiat. Phys. Chem. 20:341 (1982).Google Scholar
  16. 16.
    K. P. Kundu and N. Matsuura, Gamma-radiolysis of ferric ethylene diamine tetra-acetate in neutral aqueous solution, Int. J. Radiat. Phys. Chem. 7:565 (1975).CrossRefGoogle Scholar
  17. 17.
    M. Masarwa, H. Cohen, and D. Meyerstein, The effect of nitrilotriacetate on the mechanism of reduction of copper(II) ions by α-hydroxyalkyl free radicals via complexes with copper-carbon bonds as intermediates. A pulse-radiolytic study. Inorg. Chem. 25:4897 (1986).CrossRefGoogle Scholar
  18. 18.
    G. R. A. Johnson and N. B. Nazhat, Kinetics and mechanism of the reaction of the bis(1, 10-phenanthroline) copper(I) ion with hydrogen peroxide in aqueous solution, J. Am. Chem. Soc. 109:1990 (1987).CrossRefGoogle Scholar
  19. 19.
    G. Cohen, D. Lewis, and P. M. Sinet, Oxygen consumption during the Fenton-type reaction between hydrogen peroxide and a ferrous-chelate (Fe2+-DTPA), J. Inorg. Biochem. 15:143 (1981).CrossRefGoogle Scholar
  20. 20.
    J. D. Rush and W. H. Koppenol, The Reaction of ferrous EDTA with hydrogen peroxide: Evidence against hydroxyl radical formation, J. Free Rad. Biol. Med. 1:281 (1985).CrossRefGoogle Scholar
  21. 21.
    G. W. Klein, K. Bhatia, V. Madhavan, and R. H. Schuler, Reaction of OH with benzoic acid. Isomer distribution in the radical intermediates, J. Phys. Chem. 79:1767 (1975).CrossRefGoogle Scholar
  22. 22.
    H. Sugimoto and D. T. Sawyer, Iron(II)-induced activation of hydrogen peroxide to ferryl ion (FeO2+) and singlet oxygen (1O2) in acetonitrile: Monoxygenations, dehydrogenations of organic substrates, J. Am. Chem. Soc. 106:4283 (1984).CrossRefGoogle Scholar
  23. 23.
    P. N. Balasubramanian and T. C. Bruice, Oxygen transfer involving non-heme iron. The reaction of (EDTA)FeIII with m-chloroperbenzoic acid, J. Am. Chem. Soc. 108:5495 (1986).CrossRefGoogle Scholar
  24. 24.
    R. D. Jones, D. A. Summerville, and F. Basolo, Synthetic oxygen carriers related to biological systems, Chem. Rev. 79:139 (1979).CrossRefGoogle Scholar
  25. 25.
    J. D. Rush and B. H. J. Bielski, Pulse radiolysis studies of alkaline Fe(III) and Fe(VI) solutions. Observation of transient iron complexes with intermediate oxidation states, J. Am. Chem. Soc. 108:523 (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    B. H. J. Bielski and M. J. Thomas, Studies of hypervalent iron in aqueous solutions. Part I. Radiation induced reduction of Fe(VI) to Fe(V) by CO2 -, J. Am. Chem. Soc. 109:7761 (1987).CrossRefGoogle Scholar
  27. 27.
    J. Melton and B. H. J. Bielski (unpublished results).Google Scholar
  28. 28.
    J. Cyr and B. H. J. Bielski (unpublished results).Google Scholar
  29. 29.
    J. D. Carr, P. B. Kelter, A. Tabatabai, D. Spichal, J. Erickson, and C. W. McLaughlin, Properties of ferrate(VI) in aqueous solution: An alternate oxidant in wastewater treatment, Proc. Conf. Water Chlorination Chem. Environ. Impact & Health Effect, R. L. Jolley ed.; Lewis Chelsea, pub.; pp 1285–1298 and references therein (1985).Google Scholar
  30. 30.
    B. H. J. Bielski, Fast kinetic studies of dioxygen-derived species and their metal complexes, Phil. Trans. R. Soc. Lond. B311:473 and references therein (1985).Google Scholar
  31. 31.
    G. G. Jayson, B. J. Parson, and A. J. Swallow, Oxidation of ferrous ions by perhydroxyl radicals, J. Chem. Soc., Faraday Trans.1 236 (1973).Google Scholar
  32. 32.
    D. E. Cabelli and B. H. J. Bielski, Pulse radiolysis study of the kinetics and mechanisms of the reactions between manganese(II) complexes and HO2/O2 - radicals. 2. The phosphate complex and an overview, J. Phys. Chem. 88:6291 (1984).CrossRefGoogle Scholar
  33. 33.
    D. Klug-Roth and J. Rabani, Pulse radiolytic studies on reactions of aqueous superoxide radicals with copper(II) complexes, J. Phys. Chem. 80:588 (1976).CrossRefGoogle Scholar
  34. 34.
    G. V. Buxton, J. C. Green, and R. M. Sellers, Oxidation of copper(I)-olefin complexes in aqueous solution by oxygen and hydrogen peroxide, J. Chem. Soc., Dalton Trans. 2160 (1976).Google Scholar
  35. 35.
    J. Weinstein and B. H. J. Bielski, Reaction of superoxide radicals with copper(Il)-histidine complexes, J. Am. Chem. Soc. 102:4916 (1980).CrossRefGoogle Scholar
  36. 36.
    D. E. Cabelli, B. H. J. Bielski, and J. Holcman, The interaction between copper(II)-arginine complexes and HO2/O2 - radicals, a pulse radiolysis study, J. Am. Chem. Soc. 109:3665 (1987).CrossRefGoogle Scholar
  37. 37.
    R. Osman and H. Basch, On the mechanism of action of superoxide dismutase: A theoretical study, J. Am. Chem Soc. 106:5710 (1984). 38. J. Holcman, private communication.CrossRefGoogle Scholar
  38. 39.
    L. W. Oberly, ed., “Superoxide Dismutase”, vol. 1 and 2, CRC Press, Boca Raton, FL (1982).Google Scholar
  39. 40.
    M. C. R. Symons and J. M. Stephenson, Mechanism of the reaction of bovine copper-zinc superoxide dismutase. J. Chem. Soc., Faraday Trans. J., 79:2983 (1983).CrossRefGoogle Scholar
  40. 41.
    A. Plonka, J. Mayer, D. Metodiewa, J. L. Gebicki, A. Zgirski, and M. Grabska, Superoxide radical dismutation by copper proteins, J. Rad. Nuc. Chem. 101:221 and references therein (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Benon H. J. Bielski
    • 1
  1. 1.Chemistry DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations