Role of Oxygen Radicals in Endotoxin Shock and Disseminated Intravascular Coagulation

  • T. Yoshikawa
  • N. Yoshida
  • H. Miyagawa
  • T. Tanigawa
  • T. Takemura
  • Y. Morita
  • S. Sugino
  • M. Kondo
Part of the Basic Life Sciences book series (BLSC, volume 49)


The generation of oxygen free radicals seems to be implicated in the pathogenesis of shock and disseminated intravascular coagulation (DIC) caused by endotoxin1,2, Radical generation is increased in some critical states directly related to shock and DIC, such as tissue hypoxia3, incomplete ischemia and tissue reperfusion4, activation of arachidonic acid cascade5, and complement-induced granulocyte aggregation6.


Disseminate Intravascular Coagulation Disseminate Intravascular Coagulation Monocarboxylic Acid Endotoxin Shock Fibrin Degradation Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Yoshikawa, M. Murakami, O. Seto, Y. Kakimi, T. Takemura, T. Tanigawa, S. Sugino, and M. Kondo, Effects of superoxide dismutase and catalase on endotoxin shock in rats, J. Clin. Biochem. Nutr. 1:165 (1986).CrossRefGoogle Scholar
  2. 2.
    T. Yoshikawa, M. Murakami, N. Yoshida, O. Seto, and M. Kondo, Effects of superoxide dismutase and catalase on disseminated intravascular coagulation in rats, Thromb. Haemostas. 50:869 (1983).Google Scholar
  3. 3.
    T. Yoshikawa, Y. Furukawa, Y. Wakamatsu, S. Takemura, H. Tanaka, and M. Kondo, Experimental hypoxia and lipid peroxide in rats, Biochem. Med. 27:207 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    R.F. Del Maestro, H.H. Thaw, J. Biork, M. Planker, and K.E. Arfors, Free radicals as mediators of tissue injury, Acta Physiol. Scand. Suppl. 492:43 (1980).PubMedGoogle Scholar
  5. 5.
    A.M. Lefer, H. Arai, and S. Okamatsu, Beneficial action of a free radical scavenger in traumatic shock and myocardial ischemia, Circ. Shock 8:273 (1981).PubMedGoogle Scholar
  6. 6.
    I.M. Goldstein, D. Roos, H.B. Kaplan, and G. Weissman, Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis, J. Clin. Invest. 56:1155 (1975).PubMedCrossRefGoogle Scholar
  7. 7.
    R.B.Jr. Johnston, L.A. Guthrie, and L.C. McPhail, Priming of neutrophils for enhanced oxidative metabolism by bacterial endotoxin, in: “0xy Radicals and Their Scavenger Systems,” Vol. II, R.A. Greenwald, and G. Cohen, eds., Elsevier Science Publishing Co., New York (1983).Google Scholar
  8. 8.
    B. Gray, Effects of superoxide dismutase on lipopolysaccharide-stressed mice and alteraction of lung enzyme levels by endotoxin, Toxicol. Appl. Pharmacol. 60:479 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    I.M. Goldstein, M. Cerqueira, S. Lind, and H.B. Kaplan, Evidence that the superoxide-generating system of human leukocytes is associated with cell surface, J. Clin. Invest. 59:249 (1977).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Hong, T. Kinoshita, W. Miyazaki, T. Izawa, and K. Inoue, An anticomplementary agent, K-76 monocarboxylic acid: Its site and mechanism of inhibition of the complement activation cascade, J. Immunol. 122: 2418 (1979).PubMedGoogle Scholar
  11. 11.
    K. Abe, Y. Yuguchi, and G. Katsui, Quantitative determination of tocopherols by high-speed liquid chromatography, J. Nutr. Sci. Vitaminol. 21:183 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    K. Yagi, A simple fluorometric assay for lipid peroxide in blood plasma, Biochem. Med. 15:212 (1976).PubMedCrossRefGoogle Scholar
  13. 13.
    R. Bunag, Validation in awake rats of a tail-cuff method for measuring systolic pressure, J. Appl. Physiol. 34:279 (1973).PubMedGoogle Scholar
  14. 14.
    M.A. Andersch and A.J. Szczypinski, Use of p-nitrophenylphosphate as the substrate in determination of acid phosphatase, Am. J Clin. Path. 17:571 (1947).PubMedGoogle Scholar
  15. 15.
    W.H. Fishman, K. Kato, C.L. Anstiss, and S. Green, Human serum ß-glucuro-nidase; its measurement and some its properties, Clin. Chim. Acta. 15:435 (1967).PubMedCrossRefGoogle Scholar
  16. 16.
    H.C. Ferreira and L.G. Murat, Immunological method for demonstrating fibrin degradation products in serum and its use the diagnosis of fibrinolytic states, Br. J. Haematol, 9:299 (1963).PubMedCrossRefGoogle Scholar
  17. 17.
    J.F. Goodwin, Estimation of plasma fibrinogen using sodium sulfate fractionation, Am. J. Clin. Pathol. 35:277 (1961).Google Scholar
  18. 18.
    A.J. Quick. B.M. Stanly, and F.W. Bancroft, A Study of the coagulation defect in hemophilia and in jaundice, Am. J. Med. Sci. 190:501 (1935).CrossRefGoogle Scholar
  19. 19.
    R.D. Langdell, R.H. Wager, and K.M. Brinkhous, Effects of antihemophilic factor on one-stage clotting time. J. Lab. Klin. Med. 47:637 (1953).Google Scholar
  20. 20.
    T. Yoshikawa, Y. Furukawa, M. Murakami, S. Takemura, and M. Kondo, Experimental model of disseminated intravascular coagulation induced by sustained infusion of endotoxin, Res. Exp. Med. 179:223 (1981).CrossRefGoogle Scholar
  21. 21.
    T. Yoshikawa, M. Murakami, Y. Furukawa, H. Kato, S. Takemura, and M. Kondo, Lipid peroxidation and experimental disseminated intravascular coagulation in rats induced by endotoxin, Throm. Haemostas, 49:214 (1983).Google Scholar
  22. 22.
    T. Yoshikawa, O. Seto, K. Itani, Y. Kakimi, S. Sugino, and M. Kondo, Endotoxin-induced disseminated intravascular coagulation and shock, and their relationship with oxygen-derived free radicals, in: “Oxygen Free Radicals in Shock,” G.P. Novelli and F. Ursini, eds., Kager, Basel (1986).Google Scholar
  23. 23.
    T. Yoshikawa, M. Murakami, and M. Kondo, Endotoxin-induced disseminated intravascular coagulation in vitamin E deficient rats, Toxicol, Appl. Pharmacol. 74:173 (1984).CrossRefGoogle Scholar
  24. 24.
    H. Kato, H. Yaoita. T. Taki, and M. Nakano. LPS-induced hydrogen peroxide release from peritoneal macrophages of normal and immunodefective mice, in: “Immunopharmacology of Endotoxicosis,” M.K. Agarwal and M. Yoshida eds., Walter de Gruyter, Berlin (1984).Google Scholar
  25. 25.
    R.I. Handin, R. Carabin, and G.J. Boxer, Enhancement of platelet function by superoxide anion, J. Clin. Invest. 59:959 (1977).PubMedCrossRefGoogle Scholar
  26. 26.
    O. Higashi and Y. Kikuchi, Effects of vitamin E on the aggregation and the lipid peroxidation of platelets exposed to hydrogen peroxide, Tohoku J. Exp. Med. 112:271 (1974).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Steiner and J. Anastasi, Vitamin E. An inhibitor of the platelet release reaction, J. Clin. Invest. 57:732 (1976).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Greenberg, R.W. Grady, and C.M. Peterson, Inhibition of platelet function with 2,3-dihydroxybenzoic acid, Br. J. Haemat. 37:569 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • T. Yoshikawa
    • 1
  • N. Yoshida
    • 1
  • H. Miyagawa
    • 1
  • T. Tanigawa
    • 1
  • T. Takemura
    • 1
  • Y. Morita
    • 1
  • S. Sugino
    • 1
  • M. Kondo
    • 1
  1. 1.First Department of MedicineKyoto Prefectural University of MedicineKamigyo-ku, Kyoto, 602Japan

Personalised recommendations