Mechanisms of Oxidant-Mediated Microvascular Injury Following Reperfusion of the Ischemic Intestine

  • Barbara J. Zimmerman
  • Matthew B. Grisham
  • D. Neil Granger
Part of the Basic Life Sciences book series (BLSC, volume 49)


It is now well recognized that ischemia/reperfusion-induced tissue injury is a major factor in the pathogenesis of certain life threatening diseases such as stroke and coronary artery disease. Studies indicate that this injury occurs at the time of reperfusion rather than during the period of ischemia. There is now a large body of experimental data which suggests that oxy radicals mediate the microvascular and parenchymal cell damage observed during reperfusion of ischemic tissues. Reactive oxygen metabolites have been implicated in ischemia/reperfusion injury in the small intestine, heart, liver, pancreas, and brain.


Xanthine Oxidase Neutrophil Infiltration Reactive Oxygen Metabolite Xanthine Dehydrogenase Microvascular Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. Parks and D. N. Granger, Contributions of ischemia and reperfusion to mucosal lesion formation, Am. J. Physiol. (Gastrointest. Liver Physiol. 13) 250:G749 (1986).Google Scholar
  2. 2.
    D. N. Granger, M. E. Hollwarth, and D. A. Parks, Ischemia-reperfusion injury: Role of oxygen-derived free radicals, Acta Physiol. Scan. Suppl. 548:47 (1986).Google Scholar
  3. 3.
    D. N. Granger, L. A. Hernandez, and M. B. Grisham, Reactive oxygen metabolites: Mediators of cell injury in the digestive system, Viewpoints on Digestive Disease, 18(4):13 (1986).Google Scholar
  4. 4.
    J. L. Romson, B. G. Hood, S. L. Kunkel, G. D. Abrams, M. A. Schork, and B. R. Lucchesi, Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog, Circulation 67(5):1016 (1983).PubMedCrossRefGoogle Scholar
  5. 5.
    K. M. Mullane, N. Read, J. A. Salmon, and S. Moncada, Role of leukocytes in acute myocardial infarction in anesthetized dogs: Relationship to myocardial salvage by anti-inflammatory drugs, J. Pharm. Exp. Ther. 228(2):510 (1984).Google Scholar
  6. 6.
    R. L. Engler, M. D. Dahlgren, M. A. Peterson, A. Dobbs, and G. W. Schmid-Schonbein, Accumulation of polymorphonuclear leukocytes during 3-Hr experimental myocardial ischemia, Am. J. Physiol. 251:H93 (1987).Google Scholar
  7. 7.
    G. W. Schmid-Schonbein and R. L. Engler, Granulocytes as active participants in acute myocardial ischemia and infarction, Cardiovasc. Path. 1:15 (1987).Google Scholar
  8. 8.
    S. M. Smith, L. Holm-Rutili, M. A. Perry, M. B. Grisham, K. E. Arfors, D. N. Granger, and P. R. Kvietys, Role of neutrophils in hemorrhagic shock-induced gastric mucosal injury in the rat, Gastroenterology, 93(2):466 (1987).PubMedGoogle Scholar
  9. 9.
    M. G. Sarr, G. B. Bulkley, and J. L. Cameron, The role of leukocytes in the production of oxygen-derived free radicals in acute experimental pancreatitis, Surgery 101:292 (1987).PubMedGoogle Scholar
  10. 10.
    M. B. Grisham, L. A. Hernandez, and D. N. Granger, Xanthine oxidase and neutrophil infiltration in intestinal ischemia, Am. J. Physiol. (Gastrointest. Liver Physiol. 14) 251:G567 (1986).Google Scholar
  11. 11.
    W. F. Petrone, D. K. English, K. Wong, and J.M. McCord, Free radicals and inflammation: Superoxide-dependent activation of a neutrophil chemotactic factor in plasma, Proc. Natl. Acad. Sci. 77(2):1159 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    H. D. Perez, B. B. Weksler, and I. M. Goldstein, Generation of a chemotactic lipid from arachidonic acid by exposure to a superoxide-generating system, Inflammation 4(3):313 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    B. J. Zimmerman, M. B. Grisham, and D. N. Granger, Role of superoxide-dependent chemoattractants in ischemia-reperfusion induced neutrophil infiltration, Fed. Proc. 46(4):1124 (1987).Google Scholar
  14. 14.
    G. D. Gray, G. M. Ohlmann, D. R. Morton, and R. G. Schaub, Feline polymorphonuclear leukocytes respond chemotactically to leukotriene B, and activated serum but not to F-Met-Leu-Phe, Agents and Actions 18, 3/4:401 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    L. A. Hernandez, M. B. Grisham, B. Twohig, K. E. Arfors, J. M. Harlan, and D. N. Granger, Role of neutrophils in ischemia/reperfusion-induced microvascular injury, Am. J. Physiol. (Heart Circ. Physiol. 22) 253:H699 (1987).Google Scholar
  16. 16.
    G. J. Peppin and S. J. Weiss, Activation of the endogenous metalloproteinase, gelatinase, by triggered human neutrophils, Proc. Natl. Acad. Sci. USA 83:4322 (1986).PubMedCrossRefGoogle Scholar
  17. 17.
    S. J. Weiss, G. Peppin, X. Ortiz, C. Ragsdale, and S. T. Test, Oxidative autoactivation of latent collagenase by human neutrophils, Science 227:747 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Barbara J. Zimmerman
    • 1
  • Matthew B. Grisham
    • 1
  • D. Neil Granger
    • 1
  1. 1.Department of Physiology and BiophysicsLouisiana State University Medical CenterShreveportUSA

Personalised recommendations